
Instance Variables

Jonathan Wishcamper

Assignment Definition and General Feedback by Michael Panitz

at Cascadia Community College (http://www.cascadia.edu)

Table of contents:

 Quick Summary

 When To Use (or Avoid) This

 Example Of Usage

 Example Trace

 Syntax Explanation

 Help With The Logic

 Important Details

 Common Mistakes (And How To Fix Them)

 Hyperlinks (if any)

Quick Summary:

In Java, you can create instance variables, which unlike regular local variables, are able to be

used outside of a single method in a class. This allows you to store data in a variable that can be

accessed by multiple different methods in an object. While local variables will “disappear” after

the method is complete, instance variables will keep their value for the duration of the class that

they are in.

When To Use This / Avoid This:

There are several situations where you will want to use this technique. It is good to use if you

want a variable that can be accessed throughout the life of your object – for example, if you want

to keep track of the robots movements.

In addition, there are several situations where you will want to avoid this technique. If you do

not use the variable outside of a single method, it is better to simply declare the variable within

the class. This can prevent compile errors if you attempt to use the same variable name in a

method without meaning to, and provides better general cleanliness in your program.

Example of Usage:

Let's say you want to make a robot that will count the number of spaces moved, and be able to

print that value at any time.

There are three steps:

http://www.cascadia.edu/

First, create a new type of robot (in this example, SuperRobot). To do this, put a class declaration

above your main class: class SuperRobot extends Robot

Second, declare a variable outside of any methods (in this example, private int spacesMoved =

0;).

Finally, use this variable in any method that you wish within this class. In this example, it is used

in the public void move(int n) and public void printMoved() methods, on lines 13 and 19.

Don’t pay too much attention to the move(int n) command, just know that it will move the robot

however many spaces you specify in the code. Pay more attention to the use of the instance

variable spacesMoved.

Line Code

1. import becker.robots.*;

2. class SuperRobot extends Robot

3. {

4. private int spacesMoved = 0;

5.

6. public SuperRobot(City c, int st, int ave, Direction dir,

int num) {

7. super(c, st, ave, dir, num); }

8.

9. public void move(int n) {

10. while(n > 0) {

11. if(this.frontIsClear()) {

12. this.move();

13. spacesMoved++;

14. n--; }

15. else {

16. n=0; } } }

17.

18. public void printMoved() {

19. System.out.println("I have moved " + spacesMoved + "

Spaces!"); }

20. }

21. public class Instance_Variables_Example extends Object

22. {

23. public static void main(String[] args)

24. {

25. City bothell = new City();

26. SuperRobot Jon = new SuperRobot(bothell, 1, 1,

Direction.EAST, 0);

27. Jon.move(1);

28. Jon.printMoved();

29. Jon.move(4);

30. Jon.printMoved();

31. }

32. }

Example Trace:

In order to go over these details more thoroughly, here is a (partial) trace of the above program,

with some additional explanation afterwards:

Line

Program Statement Jon

St

Jon

Ave

spacesMoved

value
True/

False

n Value Output

23 public static void

main(String[] args)

- - - - -

26 SuperRobot Jon = new

SuperRobot(bothell, 1,

1, Direction.EAST, 0);

1 1 0 - -

27 Jon.move(1); 1 1 0 - -

9 public void move(int

n) {

1 1 0 - 1

10 while(n > 0) { 1 1 0 True 1

11 if(this.frontIsClear()

) {

1 1 0 True 1

12 this.move(); 1 2 0 - 1

13 spacesMoved++; 1 2 1 - 1

14 n--; } 1 2 1 - 0

15 else { 1 2 1 False 0

10 while(n > 0) { 1 2 1 False 0

28 Jon.printMoved(); 1 2 1 - -

18 public void

printMoved() {

1 2 1 - -

19 System.out.println("I

have moved " +

1 2 1 - - I have moved 1 Spaces!

spacesMoved + "

Spaces!"); }

29 Jon.move(4); 1 2 1 - -

- … Refer to lines 9-15 in the trace 1 6 5 - -

30 Jon.printMoved(); 1 6 5 - - I have moved 5 Spaces!

You'll notice that the trace starts at beginning of the main function, on line 23, like normal. It

proceeds normally until line 30, although it's worth noting that line 26 creates a SuperRobot,

instead of the normal Robot. The Instance Variable (spacesMoved) is now 0, because it is

created as soon as the robot is. As the program runs, spacesMoved gets greater by 1 each time

the robot moves, because of line 13. This allows the program to print out the spaces moved at

any time.

Syntax Explanation:

It is easy to place the instance variable in the wrong place, which can be disastrous. In the

following example, spacesMoved would be reset every time move is called, which would defeat

the purpose.

Let's start with the program as it's written here.

Line # Program Source Code

1. import becker.robots.*;

2. class SuperRobot extends Robot

3. {

4. public SuperRobot(City c, int st, int ave, Direction

dir, int num) {

5. super(c, st, ave, dir, num); }

6. public void move(int n) {

7. private int spacesMoved = 0;

8. while(n > 0) {

9. if(this.frontIsClear()) {

10. this.move();

11. spacesMoved++;

12. n--; }

13. else {

14. n=0; } } }

Below, you can see the finished program with the differences highlighted in yellow, so it's easy

to see what's been added/changed.

Line # Program Source Code

1. import becker.robots.*;

2. class SuperRobot extends Robot

3. {

4. private int spacesMoved = 0;

5. public SuperRobot(City c, int st, int ave, Direction

dir, int num) {

6. super(c, st, ave, dir, num); }

7. public void move(int n) {

8. while(n > 0) {

9. if(this.frontIsClear()) {

10. this.move();

11. spacesMoved++;

12. n--; }

13. else {

14. n=0; } } }

Help With The Logic:

This is good to use whenever you want to keep track of a number, string, or other variable within

an object, and you want to be able to use it within more than one of the methods. The variable is

created outside of the methods and is therefore able to be used or changed by every method in

the object.

Important Details:

 While it is not required, declaring the variable private helps because this way it is only

able to be called within the specific class (SuperRobot, for example). This way it cannot

be accidentally called by main or another class you happen to have within the same

program. Failing to declare the variable private can lead to confusing and difficult to fix

intent errors.

Mistakes People Commonly Make (And How to Fix Them):

Quick Name of Mistake: Placing variable in the wrong place

Detailed Example of Error: Variable placed inside a method instead of outside.

See syntax explanation above.

Detailed Example of Fix: See syntax explanation above.

Hyperlinks

Licensing

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Unported License

Plagiarism

If you believe that some or all of this document infringes on your intellectual property (i.e., part or all of

this document is copied from something you've written) please immediately contact Mike Panitz at

Cascadia Community College (perhaps using the Faculty And Staff Directory at

http://www.cascadia.edu/pages/searchtemplate.aspx)

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cascadia.edu/pages/searchtemplate.aspx
http://creativecommons.org/licenses/by-nc-sa/3.0/

