
Title: Having one new command call another

new command

Author #1: Henry M Le

Author #2: Gino Pineda

Author #2: Maxat Kenzhebayev

Assignment Definition and General Feedback by Michael Panitz

at CascadiaCommunity College (http://www.cascadia.edu)

Table of contents:

 Quick Summary

 When to Use (or Avoid) This

 Example of Usage

 Example Trace

 Syntax Explanation

 Help With The Logic

Quick Summary:

In Java, you can have one new command call another new command

by extending a class.

When to Use This/Avoid This:

At times you will find it tedious to write a command

repetitively to accomplish a task. By extending a class with new

services, it will allow programmers to simplify the code and use

time more efficiently.

This technique should only be used as stated above. Avoid using

this technique if the intent is not to simplify the code.

Example of Usage:

Let‟s say you want the robot bob to walk up a flight of stairs

and use a new command that will run the entire program. Within

the method that defines the new command, another new command is

created which is called upon for simplicity.

There are three steps:

http://www.cascadia.edu/

First, create the whole city with a robot and the stairs.

Second, create a new command that will run the entire program.

Third, create an extending class that will house the methods

used to define the new commands.

Line Code

1.

import becker.robots.*;

2.

3.

class RobotSmart extends Robot

4.

{

5.

 RobotSmart (City c, int st, int ave, Direction dir, int

num)

6.

 {

7.

 super(c, st, ave, dir, num);

8.

 }

9.

10.

 public void walkUpStairs()

11.

 {

12.

 this.turnLeft();

13.

 this.move();

14.

 this.turnRight();

15.

 this.move();

16.

 this.turnLeft();

17.

 this.move();

18.

 this.turnRight();

19.

 this.move();

20.

 this.turnLeft();

21.

 this.move();

22.

 this.turnRight();

23.

 this.move();

24.

 }

25.

26.

 public void turnRight()

27.

 {

28.

 this.turnLeft();

29.

 this.turnLeft();

30.

 this.turnLeft();

31.

 }

32.

}

33.

34.

public class Example_1 extends Object

35.

{

36.

 public static void main(String[] args)

37.

 {

38.

 City seattle = new City();

39. RobotSmart bob = new RobotSmart (seattle, 4, 0,

 Direction.EAST, 0);

40.

41.

 new Wall (seattle, 4, 1, Direction.WEST);

42.

 new Wall (seattle, 4, 1, Direction.NORTH);

43. new Wall (seattle, 3, 2, Direction.WEST);

44. new Wall (seattle, 3, 2, Direction.NORTH);

45. new Wall (seattle, 2, 3, Direction.WEST);

46. new Wall (seattle, 2, 3, Direction.NORTH);

47.

48. bob.walkUpStairs();

49. }

50.

}

Example Trace:

In a nutshell, this technique in adding a new service allows you

to reduce the number of “turnLeft” command.

In order to go over these details more thoroughly, here is a

(partial) trace of the above program, with some additional

explanation afterwards.

Line

Program Statement Bob’s

St #
Bob’s

Ave #
Bob’s

direction
Bob’s

Backpack

38

.

City seattle = new City(); - - - -

39 RobotSmart bob = new

RobotSmart (seattle, 4, 0,

Direction.EAST, 0);

4 0 East 0

48 bob.walkUpStairs(); 4 0 East 0

10 public void walkUpStairs() 4 0 East 0

12 this.turnLeft(); 4 0 North 0

13 this.move(); 3 0 North 0

14 this.turnRight(); 3 0 North 0

26 public void turnRight() 3 0 North 0

28 this.turnLeft(); 3 0 West 0

29 this.turnLeft(); 3 0 South 0

30 this.turnLeft(); 3 0 East 0

15 this.move(); 3 1 East 0

16 this.turnLeft(); 3 1 North 0

17 this.move(); 2 1 North 0

18 this.turnRight(); 2 1 North 0

26 public void turnRight() 2 1 North 0

28 this.turnLeft(); 2 1 West 0

29 this.turnLeft(); 2 1 South 0

30 this.turnLeft(); 2 1 East 0

19 this.move(); 2 2 East 0

20 this.turnLeft(); 2 2 North 0

21 this.move(); 1 2 North 0

22 this.turnRight(); 1 2 North 0

26 public void turnRight() 1 2 North 0

28 this.turnLeft(); 1 2 West 0

29 this.turnLeft(); 1 2 South 0

30 this.turnLeft(); 1 2 East 0

23 this.move(); 1 3 East 0

You‟ll notice that the trace starts at the beginning of the main

function, on line 38, like normal. Creating the stairs was

omitted from the trace for brevity. It proceeds normally until

line 48 where the new command „walkUpStairs‟ is called and goes

back to line 10 where the method is created.

Syntax Explanation:

Note on syntax of command: The name of the new command can be

anything you want with few restrictions. The new command cannot

have a space between the words and must be all together. First

word should be in lowercase and then the following word(s) in

uppercase.

Let's start with the program as it's written here without

creating the new commands.

Line

Program Source Code

1. import becker.robots.*;

2.

3. public class Example_1 extends Object

4. {

5. public static void main(String[] args)

6. {

7. City seattle = new City();

8. RobotSmart bob = new RobotSmart (seattle, 4,

0, Direction.EAST, 0);

9.

10. new Wall (seattle, 4, 1, Direction.WEST);

11. new Wall (seattle, 4, 1, Direction.NORTH);

12. new Wall (seattle, 3, 2, Direction.WEST);

13. new Wall (seattle, 3, 2, Direction.NORTH);

14. new Wall (seattle, 2, 3, Direction.WEST);

15. new Wall (seattle, 2, 3, Direction.NORTH);

16.

17. bob.turnLeft();

18. bob.move();

19. bob.turnLeft();

20. bob.turnLeft();

21. bob.turnLeft();

22. bob.move();

23. bob.turnLeft();

24. bob.move();

25. bob.turnLeft();

26. bob.turnLeft();

27. bob.turnLeft();

28. bob.move();

29. bob.turnLeft();

30. bob.move();

31. bob.turnLeft();

32. bob.turnLeft();

33. bob.turnLeft();

34. bob.move();

35. }

36. }

Below, you can see the finished program with the differences

highlighted in yellow, so it's easy to see what's been

added/changed).

Line

Program Source Code

1. import becker.robots.*;

2.

3. class RobotSmart extends Robot

4. {

5. RobotSmart (City c, int st, int ave, Direction

dir, int num)

6. {

7. super(c, st, ave, dir, num);

8. }

9.

10. public void walkUpStairs()

11. {

12. this.turnLeft();

13. this.move();

14. this.turnRight();

15. this.move();

16. this.turnLeft();

17. this.move();

18. this.turnRight();

19. this.move();

20. this.turnLeft();

21. this.move();

22. this.turnRight();

23. this.move();

24. }

25.

26. public void turnRight()

27. {

28. this.turnLeft();

29. this.turnLeft();

30. this.turnLeft();

31. }

32. }

33.

34. public class Example_1 extends Object

35. {

36. public static void main(String[] args)

37. {

38. City seattle = new City();

39. RobotSmart bob = new RobotSmart (seattle, 4,

0, Direction.EAST, 0);

40.

41. new Wall (seattle, 4, 1, Direction.WEST);

42. new Wall (seattle, 4, 1, Direction.NORTH);

43. new Wall (seattle, 3, 2, Direction.WEST);

44. new Wall (seattle, 3, 2, Direction.NORTH);

45. new Wall (seattle, 2, 3, Direction.WEST);

46. new Wall (seattle, 2, 3, Direction.NORTH);

47.

48. bob.walkUpStairs();

49. }

50. }

Help With The Logic:

This is good to use whenever a command is repeated. If you run

into a situation where you have to turn right more than once and

in order to turn right you have to turn left three times,

creating a new command would help simplify that task.

Licensing

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 3.0 Unported License

Plagiarism

If you believe that some or all of this document infringes on your

intellectual property (i.e., part or all of this document is copied

from something you've written) please immediately contact Mike Panitz

at CascadiaCommunity College (perhaps using the Faculty And Staff

Directory at http://www.cascadia.edu/pages/searchtemplate.aspx)

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cascadia.edu/pages/searchtemplate.aspx
http://creativecommons.org/licenses/by-nc-sa/

