
Logical Operator &&
Hannah Wiltsey

Assignment Definition And General Feedback By Michael Panitz

at Cascadia Community College (http://www.cascadia.edu)

Table of contents:

 Quick Summary

 When To Use (or Avoid) This

 Example Of Usage

 Example Trace

 Syntax Explanation

 Help With The Logic

 Important Details

Quick Summary:
In Java, you can tell a program to implement a method if or while a series of tests is true. Rather

than nesting another if or while statement, adding the logical operator && means all tests which

are therein connected must return true. If one or more of the tests does not return true, then the

accompanying methods will not be executed. Also, if the first test does not return true, Java will

not bother to run the others (unless there is also an “or” || operator, but I digress.)

When To Use This / Avoid This:
There are several situations where you will want to use this technique. One such time is when

you only want a method to run if a number of different tests prove true (or one proves true and

one false, if you use the ! negation symbol. But it would still be true for both anyway.)

There are several situations where you will want to avoid this technique. If only one of the tests

need to be true, in which case, use the “or” operator, ||

Example Of Usage:
Let's say you want the Robot Enterprise to pick up a Thing only while there is less than 2 Things

in its backpack, AND there is a Thing in the intersection.

There are, essentially, 2 steps:

First, you determine what tests you wish to run. In this case, we'll start with saying what we want

the program to do in “English”: While there is less than 2 Things in Enterprise’s Backpack, AND

there is a Thing in the intersection, pick up a Thing.

http://www.cascadia.edu/

Second, “Translate” (for lack of a better

word) into Java:

The important thing here is what is

highlighted in the bold red arrangement.

When saying you want thus-and-so AND

such-and-such to be true, the “and” is

represented by two ampersands, &&. The

ampersands go within the parentheses of the

if or while statement, and connect the two

(or three, or four, etc.) tests. When there is

more than one set of &&, (or any logical

operator) the operations are executed in the order of precedence (which we technically don't have

to worry about in this section because I'm only dealing with &&) or, if the precedence is the

same, then they get executed in order from left to right. (This, also doesn't really apply with the

“and” operator because if one test proves to be false, then none of the other tests will be executed

anyway.).

Line Code

1. import becker.robots.*;

2.

3. public class Example_2 extends Object

4. {

5. public static void main(String[] args)

6. {

7. City UnchartedPlanet = new City(6, 9);

8. Robot Enterprise = new Robot(UnchartedPlanet, 3, 3,

 Direction.EAST, 0);

9. new Thing(UnchartedPlanet, 3, 4);

10. new Thing(UnchartedPlanet, 3, 5);

11. new Thing(UnchartedPlanet, 3, 7);

12.

13. while(Enterprise.getAvenue() != 8)

14. {

15. while (Enterprise.countThingsInBackpack() < 2 &&

 Enterprise.canPickThing())

16. {

17. Enterprise.pickThing();

18. }

19. Enterprise.move();

20. }

21. }

22. }

Example Trace:
In a nutshell, this technique allows you to have two or more criteria for performing an action

In order to go over these details more thoroughly, here is a (partial) trace of the above program,

with some additional explanation afterwards

Line# Program Statement Enterprise

Location

Thing

Locations

T/F

7 City UnchartedPlanet = new City(6, 9); - - -

8 Robot Enterprise = new

Robot(UnchartedPlanet, 3, 3,

Direction.EAST, 0);

(3,3,E,0) - -

9 new Thing(UnchartedPlanet, 3, 4); (3,3,E,0) (3,4) -

10 new Thing(UnchartedPlanet, 3, 5); (3,3,E,0) (3,4) (3,5) -

11 new Thing(UnchartedPlanet, 3, 7); (3,3,E,0) (3,4) (3,5)

(3,7)

-

13 while(Enterprise.getAvenue() !=

8)

(3,3,E,0) (3,4) (3,5)

(3,7)

T

15

1

5

while

(Enterprise.countThingsInBackpack() <= 2

&&

 Enterprise.canPickThing())

(3,3,E,0) (3,4) (3,5)

(3,7)

F

19

1

7

Enterprise.move(); (3,4,E,0) (3,4) (3,5)

(3,7)

-

13 while(Enterprise.getAvenue() !=

8)

(3,4,E,0) (3,4) (3,5)

(3,7)

T

5

while

(Enterprise.countThingsInBackpack() <= 2

&&

 Enterprise.canPickThing())

(3,4,E,0) (3,4) (3,5)

(3,7)

T

17 Enterprise.pickThing(); (3,4,E,1) (3,5) (3,7) -

19 Enterprise.move(); (3,5,E,1) (3,5) (3,7) -

13 while(Enterprise.getAvenue() !=

8)

(3,5,E,0) (3,5) (3,7) T

5

while

(Enterprise.countThingsInBackpack() <= 2

&&

 Enterprise.canPickThing())

(3,4,E,1) (3,5) (3,7) T

17 Enterprise.pickThing(); (3,4,E,2) (3,7) -

19 Enterprise.move(); (3,6,E,2) (3,5) (3,7) -

13 while(Enterprise.getAvenue() !=

8)

(3,6,E,2) (3,7) T

5

while

(Enterprise.countThingsInBackpack() <= 2

&&

 Enterprise.canPickThing())

(3,6 ,E,2) (3,7) F

19 Enterprise.move(); (3,7,E,2) (3,7) -

13 while(Enterprise.getAvenue() !=

8)

(3,7,E,2) (3,7) T

5

while

(Enterprise.countThingsInBackpack() <= 2

&&

 Enterprise.canPickThing())

(3,7,E,2) (3,7) F

19 Enterprise.move(); (3,8,E,2) (3,7) -

13 while(Enterprise.getAvenue() !=

8)

(3,8,E,2) (3,7) F

You'll notice that the trace starts at beginning of the main function, on line 7, like normal. It

proceeds normally until line 15, where we see the && operator. The first time the && operator is

called, the first test (things in backpack being less than (or equal to) 2) returns true, but the

second test (the robot can pick thing) returns false, so the entire statement returns false. The next

two times the && operator is encountered, both tests return true, so the whole statement is true,

so the Enterprise picks up the Thing. The third time the && operand is encountered, the first test

returns true (things in backpack are less than or equal to 2), but the second test (a thing in the

intersection) returns false. The fourth (and final) time the && operand is encountered, the second

test returns true (there is a Thing in the intersection), but the first test returns returns false,

because there are exactly 2 Things in the backpack, therefore the whole statement is false.

Syntax Explanation:

In regards to syntax, the logic operator && is used to connect two BOOLEAN expressions,

something that will output either true or false.

Help With The Logic:
This is good to use whenever you want more than one criteria to be met before a program

executes a certain method.

Important Details:
When there is more than one set of &&, (or any logical operator) the operations are executed in

the order of precedence (which we technically don't have to worry about in this section because

I'm only dealing with &&) or, if the precedence is the same, then they get executed in order from

left to right. (This, also doesn't really apply with the “and” operator because if one test proves to

be false, then none of the other tests will be executed anyway.).

Licensing

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Unported License

Plagiarism
If you believe that some or all of this document infringes on your intellectual property (i.e., part or all of

this document is copied from something you've written) please immediately contact Mike Panitz at

Cascadia Community College (perhaps using the Faculty And Staff Directory at

http://www.cascadia.edu/pages/searchtemplate.aspx)

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cascadia.edu/pages/searchtemplate.aspx

