

Title: Input (using Scanner)

Author: Jonathan Huisingh

Assignment Definition And General Feedback By Michael Panitz
at Cascadia Community College (http://www.cascadia.edu)

Table of contents:

 Quick Summary *

 When To Use (or Avoid) This *

 Example Of Usage *

 Example Trace *

 Syntax Explanation *

 Help With The Logic

 Important Details

 Common Mistakes (And How To Fix Them)

 Hyperlinks (if any)

(Required sections have a * after them in the above list)

Quick Summary:

 In Java, you can receive user input via a Scanner (we will be using a keyboard in
this section). The user input will be processed via jGRASP's console window, and you
must start the program before it will be accepted. While the program is being run, it will
pause when you call for user input. The input will then be processed based on how you
programmed the input. You will need to specify what type of input the user should use
(int, char, string...).

 In order to process user information you will need to import the java util library,
in addition to importing the library, you will need to call the Scanner in any class you
choose to process user information. Once per class is sufficient, java will allow you to
call the Scanner multiple times, but there is no reason to do so.

 It is possible to use the keyboard to input, and Java to process all sorts of
information, however, we will be focusing only on numerical input (specifically integer)
in this section.

When To Use This / Avoid This:

 Calling for user input would be prudent whenever you want the user to make a
decision as to how the program should proceed. For instance, if you want the user to
decide what direction your robot should travel, how far the robot should travel, whether
or not to pick up a thing at an intersection, or if you would like the robot to put down a
thing at an intersection.

 You should not call for user input if there is no reason to have user input. For
example, if your robot is designed to simply traverse terrain or a hallway, there would be
no point of asking the user how to achieve this.

Example Of Usage:

 Lets say you are creating a robot that will have a choice take a left path and pick

http://www.cascadia.edu/

up a thing, or take a right path and put a thing down. You can ask the user to decide for
you, once you have programmed in both scenarios. This program demonstrates one way
to do this, with the new/important parts in bold-faced larger font.

There are 5 steps:

 Import the java util file to be able to process the keyboard input.

 Add the line: "Scanner keyboard = new Scanner(System.in)" to your class or
method; this is necessary for java be able to use the input device.

 Use System.out.print(“Insert text here”); to print out a message telling the user the
valid options.

 Call keyboard input with the command keyboard.hasNextInt(); to prompt the user
with options for valid input choices.

 Handle the users input correctly based on their choice.

Line Code

1 import becker.robots.*;

2. import java.util.*;

3.

4. class RobotIO extends RobotSE{

5. public RobotIO(City c, int st, int ave, Direction dir, int

num){

6. super(c, st, ave, dir, num);

7.

8. public void userLeftOrRight(){

9. Scanner keyboard = new Scanner(System.in);

10. int i = 0;

11. while(i < 1){

12. System.out.println ("Would you like to take the

left or right path?");

13. System.out.println ("Press 1 for Left.");

14. System.out.println ("Press 2 for Right.");

15. if(keyboard.hasNextInt()){

16. int userChoice = keyboard.nextInt();

17. }

18. if(userChoice == 1 || userChoice == 2){

19. if(userChoice == 1){

20. this.turnLeft();

21. this.move();

22. this.turnRight();

23. }

24. else{

25. this.turnRight();

26. this.move();

27. this.turnLeft();

28. }

29. i++;

30. }

31. else{

32. System.out.println ("Please enter a valid

integer.");

33. }

34. }

35. else{

36. System.out.println ("Please enter a valid

integer.");

37. }

38. keyboard.nextLine();

39. }

40. }

41. }

42. public class Demo_1_ORIGINAL extends Object

43. {

44. public static void main(String[] args)

45. {

46. City seattle = new City();

47. RobotIO bob = new RobotIO(seattle, 3, 2,

Direction.EAST, 0);

48.

49. new Wall(seattle, 3, 3, Direction.WEST);

50. bob.userLeftOrRight();

51. System.out.println ("You've made your choice.");

52. }

53. }

Example Trace:

In a nutshell, this technique allows you to accept user input to choose the robots
direction, then process the information in one of four ways. The first trace is a trace of the
user choosing option 1, take a left turn. The second is option 2, take a right turn. The third
trace is a trace of the user choosing an integer that is not a valid option, and the fourth
would be the programs operation if the user put in a data type other then an integer.

In order to go over these details more thoroughly, here is a (partial) trace of the above
program, with some additional explanation afterward

Lin

e#

Program Statement Robot

Info

i userC

hoice

True /

False

USER

INPUT

Wall 1 Output

46 public static

void
main(String[]
args

- -

48 City seattle =
new City(;

- -

49 RobotIO bob =
new

RobotIO(seattl
e, 3, 2,
Direction.EAST
, 0;

3,2,E -

51 new
Wall(seattle,
3, 3,

Direction.WEST

3,2,E - 3,3,W

;

53 bob.userLeftOr
Right(;

3,2,E - 3,3,W

12 public void

userLeftOrRigh
t({

3,2,E - 3,3,W

13 int i = 0; 3,2,E 0 3,3,W
14 while(i < 1{ 3,2,E 0 TRUE 3,3,W
15 System.out.pri

ntln ("Would
you like to

take the left
or right
path?";

3,2,E 0 3,3,W Would you
like to
take the

left or
right
path?

16 System.out.pri
ntln ("Press 1
for Left.";

3,2,E 0 3,3,W Press 1
for Left.

17 System.out.pri
ntln ("Press 2
for Right.";

3,2,E 0 3,3,W Press 2
for
Right.

18 if(keyboard.ha
sNextInt({

3,2,E 0 TRUE 1 3,3,W

19 int userChoice
=

keyboard.nextI
nt(;

3,2,E 0 1 1 3,3,W

20 if(userChoice
== 1 ||
userChoice ==
2{

3,2,E 0 1 TRUE 1 3,3,W

21 if(userChoice

== 1{

3,2,E 0 1 TRUE 1 3,3,W

22 this.turnLeft(
;

3,2,N 0 1 1 3,3,W

23 this.move(; 3,1,N 0 1 1 3,3,W
24 this.turnRight

(;
3,1,E 0 1 1 3,3,W

31 i++; 3,1,E 1 1 1 3,3,W
40 keyboard.nextL

ine(;
3,1,E 1 - 1 3,3,W

14 while(i < 1{ 3,1,E 1 - FALSE - 3,3,W
54 System.out.pri

ntln ("You've
made your

choice.";

3,1,E - - - 3,3,W You've
made your
choice.

Option 2: User Input 2 (skipping 46-15)

Line

Program Statement Robot

Info

i user

Choi

True /

False

USER

INPUT

Wall 1 Output

ce

15 System.out.print
ln ("Would you
like to take the

left or right
path?";

3,2,E 0 3,3,W Would you
like to take
the left or

right path?

16 System.out.print
ln ("Press 1 for
Left.";

3,2,E 0 3,3,W Press 1 for
Left.

17 System.out.print

ln ("Press 2 for
Right.";

3,2,E 0 3,3,W Press 2 for

Right.

18 if(keyboard.hasN
extInt({

3,2,E 0 TRUE 2 3,3,W

19 int userChoice =
keyboard.nextInt
(;

3,2,E 0 2 2 3,3,W

20 if(userChoice ==
1 || userChoice
== 2{

3,2,E 0 2 TRUE 2 3,3,W

21 if(userChoice ==
1){

3,2,E 0 2 FALSE 2 3,3,W

26 else{ 3,2,E 0 2 2
27 this.turnRight()

;

3,2,S 0 2 2

28 this.move(); 4,2,S 0 2 2
29 this.turnLeft(); 4,2,E 0 2 2
31 i++; 4,2,E 1 2 2 3,3,W
40 keyboard.nextLin

e(;
4,2,E 1 2 - 3,3,W

14 while(i < 1{ 4,2,E 1 2 FALSE - 3,3,W
54 System.out.print

ln ("You've made
your choice.";

4,2,E - - - 3,3,W You've made
your choice.

Option 3: User Input non-valid integer (skipping 46-15)

Line

Program Statement Robot

Info

i userC

hoice

True /

False

US

ER

INP

UT

Wall 1 Output

15 System.out.println
("Would you like
to take the left

or right path?";

3,2,E 0 3,3,W Would you like
to take the
left or right

path?

16 System.out.println
("Press 1 for
Left.";

3,2,E 0 3,3,W Press 1 for
Left.

17 System.out.println
("Press 2 for

Right.";

3,2,E 0 3,3,W Press 2 for
Right.

18 if(keyboard.hasNex
tInt({

3,2,E 0 TRUE 3 3,3,W

19 int userChoice =
keyboard.nextInt()

;

3,2,E 0 3 3 3,3,W

20 if(userChoice == 1
|| userChoice ==
2{

3,2,E 0 3 FALSE 3 3,3,W

33 else{ 3,2,E 0 3 3 3,3,W
33 System.out.println

("Please enter a

valid integer.");

3,2,E 0 3 3 3,3,W Please enter a
valid integer.

40 keyboard.nextLine(
);

3,2,E 0 3 - 3,3,W

14 while(i < 1){ 3,2,E 0 3 TRUE - 3,3,W
 ->repeats until

correct int is
input

Option 4: User Input non-integer (skipping 46-15)

Line

Program Statement Robot

Info

i userC

hoice

True /

False

USE

R

INPU

T

Wall 1 Output

15 System.out.printl
n ("Would you
like to take the
left or right
path?";

3,2,E 0 3,3,W Would you like
to take the
left or right
path?

16 System.out.printl
n ("Press 1 for
Left.";

3,2,E 0 3,3,W Press 1 for
Left.

17 System.out.printl
n ("Press 2 for
Right.";

3,2,E 0 3,3,W Press 2 for
Right.

18 if(keyboard.hasNe

xtInt({

3,2,E 0 FALSE B 3,3,W

37 else{ 3,2,E 0 B 3,3,W
20 if(userChoice ==

1 || userChoice
== 2{

3,2,E 0 FALSE B 3,3,W

33 else{ 3,2,E 0 B 3,3,W
37 System.out.printl

n ("Please enter
a valid
integer.");

3,2,E 0 B 3,3,W Please enter a

valid integer.

40 keyboard.nextLine
();

3,2,E 0 - 3,3,W

14 while(i < 1){ 3,2,E 0 TRUE - 3,3,W
 ->repeats until

correct int is
input

You'll notice that the trace starts at beginning of the main function, on line 46, like
normal. It proceeds normally until line 54, although it's worth noting that lines 4 and 48
are creating RobotSE robot which has turnRight already available, instead of the normal
"plain vanilla" Robot robots.

Once our city is created, and our robot and wall placed, we call the command
userLeftOrRight(); skipping back up to line 12, we can see what this command will do.
First off, we create a new int, called i, this int is simply to keep track whether or not a
valid option has been chosen. Next, we start a while loop, this loop will run until i's value
is equal to one. We will set i's value to one after we accomplish having a valid option
chosen by the user for the robot to follow.

We now print the options for the user, on 3 lines:

 Would you like to take the left or right path?
 Press 1 for Left.
 Press 2 for Right.

Line 18 is checking whether the user has input an integer. There are 4 total possibilities
here. The user can enter 1, 2, a valid but unused integer, or a different character type. The
four routes the program will take are as follows:

1. The user does not input an integer, we skip down to line 37, the else to this if,
and ask the user to Please enter a valid integer. then proceed to
line 40, clear the users input with keyboard.nextLine(); and restart the while loop
on line 14.

2. The user inputs any integer on line 18 we are taken to the next line, which
creates the local variable userChoice, then sets it equal to the users input. Line 20
checks to see if the users input was equal to 1 or 2, if it is not, we are taken to the
else line on 33, which again asks for a valid integer, then proceeds to clear the
keyboard input and restart the while loop. Notice that we still have a variable with
userChoice set, this should not matter as it will be recast during the next while
loop.

3. The user inputs a 1, this passes the if statement. In the case a 1 is entered, line
21's if statement will be true, we we turn left, move up a spot, then turn right to
the starting direction. Once this is complete, we skip down to line 31, increase the
i counter by one, skip down to 40, clear the keyboard input, start the while loop
which fails, and skip back down to main.

4.The user inputs a 2, this passes the if statement on 20, but fails the next if
statement on line 21, so we proceed to the else on line 26. At this point we turn
right, move one spot, turn back to the left to the starting direction. Once this is
complete, we skip down to line 31, increase the i counter by one, skip down to 40,
clear the keyboard input, start the while loop which fails, and skip back down to
main.

When back in main, on line 55, and we print to the user You've made your
choice. and end the program.

Syntax Explanation:

Integers are not the only data type that you can accept from the keyboard, but we will
only be going over integers at this point.

Let's start with the program as it's written here. You will need to create both outcomes for
accepting the proper integers that you have programmed the program to accept, as well as
for options that are not accepted. You do not want the program to break if the user does
not read the instructions correctly. Notice the 4 options we went over earlier here in the
while loop.

Below, you can see the finished program with the new information highlighted in yellow.

import becker.robots.*;

import java.util.*;

class RobotIO extends RobotSE{

 public RobotIO(City c, int st, int ave, Direction dir,
int num){

 super(c, st, ave, dir, num);

 }

 Scanner keyboard = new Scanner(System.in);

 public void userLeftOrRight(){

 int i = 0;

 while(i < 1){

 System.out.println ("Would you like to take the

left or right path?");

 System.out.println ("Press 1 for Left.");

 System.out.println ("Press 2 for Right.");

 if(keyboard.hasNextInt()){

 int userChoice = keyboard.nextInt();

 if(userChoice == 1 || userChoice == 2){

 if(userChoice == 1){

 this.turnLeft();

 this.move();

 this.turnRight();

 }

 else{

 this.turnRight();

 this.move();

 this.turnLeft();

 }

 i++;

 }

 else{

 System.out.println ("Please enter a valid

integer.");

 }

 }

 else{

 System.out.println ("Please enter a valid

integer.");

 }

 keyboard.nextLine();

 }

 }

}

public class Demo_1_ORIGINAL extends Object

{

 public static void main(String[] args)

 {

 City seattle = new City();

 RobotIO bob = new RobotIO(seattle, 3, 2,

Direction.EAST, 0);

 new Wall(seattle, 3, 3, Direction.WEST);

 bob.userLeftOrRight();

 System.out.println ("You've made your choice.");

 }

}

Help With The Logic:

This is good to use whenever you want to take user input to make a decision. The
decisions you can accept are very broad, so we have chosen to just make the decision to
turn right or left in this example. Since this choice is in its own re-callable command you
can use the same method at any turn you would need during the program.

Important Details:

Point #1
If you do not set up the program to handle incorrect input, or to clear the keyboard
after each while loop you can get stuck in a loop of running text, or crashing the
program. Make sure to set up the program to handle whatever the user could
screw up.

Point #2

 It is important to use the command keyboard.nextLine(); if you fail to
do this, the program can also hang, or get stuck in an infinite loop.

Mistakes People Commonly Make (And How To Fix Them):

Getting stuck in a loop:
Detailed Example Of Error: If you do not set up the program clear the
keyboard input at the end of the loop, you will get stuck in an infinite loops of the
program asking for a valid integer, then giving you the input options, then reseting
back to thinking the user has input the invalid response again.
Detailed Example Of Fix: (unless it's obvious): Make sure that no matter which
option the program takes, (invalid integer, valid integer, non-integer), that the
program clears the keyboard with keyboard.nextLine(); after taking the correct
course.

This work is licensed under a Creative Commons Attribution-HYPERLINK

"http://creativecommons.org/licenses/by-nc-sa/3.0/"NonCommercialHYPERLINK
"http://creativecommons.org/licenses/by-nc-sa/3.0/"-HYPERLINK

"http://creativecommons.org/licenses/by-nc-sa/3.0/"ShareAlikeHYPERLINK
"http://creativecommons.org/licenses/by-nc-sa/3.0/" 3.0 HYPERLINK

"http://creativecommons.org/licenses/by-nc-sa/3.0/"UnportedHYPERLINK
"http://creativecommons.org/licenses/by-nc-sa/3.0/" License

Plagiarism

If you believe that some or all of this document infringes on your intellectual property (i.e., part
or all of this document is copied from something you've written) please immediately contact

Mike Panitz at Cascadia Community College (perhaps using the Faculty And Staff Directory at
http://www.cascadia.edu/pages/searchtemplate.aspx)

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cascadia.edu/pages/searchtemplate.aspx

