
Title: Understanding While loops and their

function

Author #1: Carmen Petru

Author #2: Edward Madalina

Assignment Definition And General Feedback By Michael Panitz

at Cascadia Community College (http://www.cascadia.edu)

Table of contents:

 Quick Summary *

 When To Use (or Avoid) This *

 Example Of Usage *

 Example Trace *

 Syntax Explanation *

 Help With The Logic*

 Important Details

 (Required sections have a * after them in the above list)

Quick Summary:

In Java, while loops allow the robot to evaluate whether a statement is true; if so it will execute

the true statement until it is false, thus looping. While loops are either true or false. Another way

to look at this is; it only answers to yes or no questions.

It is important to note that although both if and while loop statements are similar in syntax, they

serve logically different functions. Remember that if statements decide whether or not to execute

a command and then moves on to the next command; on the other hand, while loops determine

how many times to execute a command based on whether it is true or not.

When To Use This / Avoid This:

There are several situations where you will want to use this technique. It is most helpful when

trying to eliminate a repetitive service such as moving forward. For example, if you want to

move the robot 4 times till there‟s a wall in its way, you could write out “karel.move(); ” 4 times,

or you could replace it with a while loop which will tell the robot to move forward if the front is

clear, or „false‟. This reduces the clutter and allows you to have clear and concise commands.

Another situation where a while loop is helpful, is if a command or service is true, then execute

something else or if a service is false then execute something else. That is, while something can

be picked up, then “turnLeft(); ”. These situations can replace repetitive “if” statements when

http://www.cascadia.edu/

you know there will be more than one instance occurring. Furthermore, not only could you use a

while loop in main but you could make a public void service that calls out a command to be done

at specific times and allows multiple robots to use it.

There are several situations where you will want to avoid this technique. There are times when

you don‟t need the robot to repeat a command; this will lead to a logical error. That is, the while

statement will continue to be true and loop, thus ceasing to move onto the next command. For

example, a robot moves to an intersection where there is a Thing, the next commands calls a

while loop, which tells the robot to turnRight while it can pickThing; the robot will continuously

turnRight because a Thing continues to be underneath it. In this instance an if command would

be more useful as it would be true; the robot would turnRight and move on to the next command.

Example Of Usage:

Let's say you have a problem; you want the robot to move from one wall until it reaches another

wall, and then returns to its original position having collected any Things in its path. We can

assume that the distance between the walls is random, as well as the number of things. (For the

purposes here an example is given below.) You want to make a new command that would fit

any given distance and Things. We can make a service that has a while loop; this command can

be called out in main by the respective robot.

The following steps pertain to the code example given below. Notice that the while

loop statements are highlighted in Grey and are bold as to make it clearer to

understand.

There are 3 simple steps:

First, (assuming you have already defined a new type of robot, lines 3-8) create a public void

service with the name representing the desired action (Line 16-22). (Note it is not necessary to

create a new command in main for the while loop to actually work. See both examples below)

Second, within the service brackets {} type while, this should immediately turn purple as it

is recognized by the Java language. Next parentheses (), it is better to type them out first and

then just place your cursor inside; this will reduce the chances of having an error due to

forgetting parentheses… Type the statement/command you wish the robot to answer true or false

to (Line 18); don‟t forget parentheses after the statement.

Third, within another set of parentheses (Line 19 & 21), type the action the robot should execute

as the statement continues to be true (Line 20).

Line Code

1. import becker.robots.*;

2.

3. class Robotcool extends Robot

4. {

5. public Robotcool(City theCity, int str, int ave,

Direction dir, int numThings)

6. {

7. super(theCity, str, ave, dir, numThings);

8. }

9.

10. public void turnAround()

11. {

12. this.turnLeft();

13. this.turnLeft();

14. }

15.

16. public void moveForward()

17. {

18. while (this.frontIsClear())

19. {

20. this.move();

21. }

22. }

23.

24. public void harvest()

25. {

26. while (this.frontIsClear())

27. {

28. this.move();

29. if (this.canPickThing())

30. {

31. this.pickThing();

32. }

33. }

34. }

35.

36. }

37.

38. public class whileExample extends Object

39. {

40. public static void main(String[] args)

41. {

42. City Seattle = new City();

43. Robotcool Eddie = new Robotcool(Seattle, 0, 4,

Direction.SOUTH, 0);

44.

45. new Wall(Seattle, 0, 4, Direction.NORTH);

46. new Wall(Seattle, 4, 4, Direction.SOUTH);

47.

48. new Thing (Seattle, 1, 4);

49. new Thing (Seattle, 2, 4);

50. new Thing (Seattle, 3, 4);

51.

52. Eddie.moveForward();

53.

54. while (! Eddie.frontIsClear())

55. {

56. Eddie.turnAround();

57. }

58.

59. Eddie.harvest();

60. Eddie.turnAround();

61. }

62. }

Example Trace:

In a nutshell, this technique allows you to repeat commands in both main; for a specific robot, or

while creating a new service. If we look at what happens when the program runs, we notice that

the first command moveForward (Line 52), calls a while loop which is define on line 16. So we

jump up to line 16 and ask is the front clear? If so move (Line 20). This is repeated a total of 4

times, because on the 5th time asking if the front is clear? The answer is no/false and so we

return back down to main and continue executing the rest of the commands (Line 54).

In order to go over these details more thoroughly, here is a (partial) trace of the above program,

with some additional explanation afterwards

Lin
e#

Program Statement Eddie’s
Street #

Eddie’s
Ave #

Eddie’s
Direction

Eddie’s
Backpack

Contents

True/
 False

Wall 1 Wall
2

Thing Thing Thing

42 City Seattle = new

City();

- - - - - - - - - -

43 Robotcool Eddie =

new

Robotcool(Seattle,

0, 4,

Direction.SOUTH, 0);

0 4 SOUTH 0 - - - - - -

45 new Wall(Seattle, 0,

4, Direction.NORTH);

0 4 SOUTH 0 - 0,4,N - - - -

46 new Wall(Seattle, 4,

4, Direction.SOUTH);

0 4 SOUTH 0 - 0,4,N 4,4,S - - -

48 new Thing (Seattle,

1, 4);

0 4 SOUTH 0 - 0,4,N 4,4,S 1,4 - -

49 new Thing (Seattle,

2, 4);

0 4 SOUTH 0 - 0,4,N 4,4,S 1,4 2,4 -

50 new Thing (Seattle,

3, 4);

0 4 SOUTH 0 - 0,4,N 4,4,S 1,4 2,4 3,4

52 Eddie.moveForward(); 0 4 SOUTH 0 - 0,4,N 4,4,S 1,4 2,4 3,4

16 public void

moveForward()

0 4 SOUTH 0 - 0,4,N 4,4,S 1,4 2,4 3,4

18 while (

this.frontIsClear()

)

0 4 SOUTH 0 T 0,4,N 4,4,S 1,4 2,4 3,4

20 this.move(); 1 4 SOUTH 0 - 0,4,N 4,4,S 1,4 2,4 3,4

18 while (

this.frontIsClear()

)

1 4 SOUTH 0 T 0,4,N 4,4,S 1,4 2,4 3,4

20 this.move(); 2 4 SOUTH 0 - 0,4,N 4,4,S 1,4 2,4 3,4

18 while (

this.frontIsClear()

)

2 4 SOUTH 0 T 0,4,N 4,4,S 1,4 2,4 3,4

20 this.move(); 3 4 SOUTH 0 - 0,4,N 4,4,S 1,4 2,4 3,4

18 while (

this.frontIsClear()

)

3 4 SOUTH 0 T 0,4,N 4,4,S 1,4 2,4 3,4

20 this.move(); 4 4 SOUTH 0 - 0,4,N 4,4,S 1,4 2,4 3,4

18 while (

this.frontIsClear()

)

4 4 SOUTH 0 F 0,4,N 4,4,S 1,4 2,4 3,4

54 while (!

Eddie.frontIsClear()

)

4 4 SOUTH 0 T 0,4,N 4,4,S 1,4 2,4 3,4

56 Eddie.turnAround(); 4 4 SOUTH 0 - 0,4,N 4,4,S 1,4 2,4 3,4

You'll notice that the trace starts after the main function, on line 42. It proceeds normally until

line 52, which calls a new service. Java then jumps up to define that service (Line 16) which

includes a while loop (Line 18), and a command to execute if the statement is true (Line 20).

Syntax Explanation:

Note on syntax of command: The while loop can execute any service that java already

recognizes or a new one you create. It is important to evaluate the given situation and assess

whether or not you need a command to repeat multiple times “while” or once, “if”. If a while

statement satisfies the problem then be cautious of the commands you wish to put within the

brackets, and the commands that follow right after.

Let's start with the program as it's written here. Take note of the number of times the move

command must be typed to accomplish the simple task of moving from one wall to another.

Line # Program Source Code

1. import becker.robots.*;
2.

3. class Robotcool extends Robot

4. {

5. public Robotcool(City theCity, int str, int ave, Direction dir, int numThings)
6. {

7. super(theCity, str, ave, dir, numThings);

8. }
9.

10. public void turnAround()

11. {

12. this.turnLeft();
13. this.turnLeft();

14. }

15. }

16.

17. public class PrewhileExample extends Object

18. {

19. public static void main(String[] args)
20. {

21. City Seattle = new City();

22. Robotcool Eddie = new Robotcool(Seattle, 0, 4, Direction.SOUTH, 0);

23.

24. new Wall(Seattle, 0, 4, Direction.NORTH);

25. new Wall(Seattle, 4, 4, Direction.SOUTH);

26.

27. new Thing (Seattle, 1, 4);

28. new Thing (Seattle, 2, 4);

29. new Thing (Seattle, 3, 4);

30.

31. Eddie.move();

32. Eddie.move();

33. Eddie.move();

34. Eddie.move();

35.

36. Eddie.turnAround();

37.
38. Eddie.move();

39. Eddie.pickThing();

40. Eddie.move();
41. Eddie.pickThing();

42. Eddie.move();

43. Eddie.pickThing();

44. Eddie.move();
45. Eddie.turnAround();

46. }

47. }

Below, you can see the finished program with the differences highlighted in yellow, so it's easy

to see what's been added/changed).

Line # Program Source Code
1. import becker.robots.*;

2.

3. class Robotcool extends Robot
4. {

5. public Robotcool(City theCity, int str, int ave, Direction dir, int numThings)

6. {

7. super(theCity, str, ave, dir, numThings);
8. }

9.

10. public void turnAround()
11. {

12. this.turnLeft();

13. this.turnLeft();

14. }
15.

16. public void moveForward()

17. {

18. while (this.frontIsClear())
19. {

20. this.move();

21. }
22. }

23.

24. public void harvest()

25. {

26. while (this.frontIsClear())

27. {

28. this.move();

29. if (this.canPickThing())
30. {

31. this.pickThing();

32. }
33. }

34. }

35.

36. }

37.

38. public class whileExample extends Object

39. {

40. public static void main(String[] args)

41. {

42. City Seattle = new City();

43. Robotcool Eddie = new Robotcool(Seattle, 0, 4, Direction.SOUTH, 0);
44.

45. new Wall(Seattle, 0, 4, Direction.NORTH);

46. new Wall(Seattle, 4, 4, Direction.SOUTH);

47.

48. new Thing (Seattle, 1, 4);

49. new Thing (Seattle, 2, 4);

50. new Thing (Seattle, 3, 4);
51.

52. Eddie.moveForward();

53.

54. while (! this.frontIsClear())
55. {

56. Eddie.turnAround();

57. }

58.

59. Eddie.harvest();

60. Eddie.turnAround();

61. }

62. }

63.

The definition of the new command starts on line 16. Well what does it mean to

“moveForward”? Move to line 18, which contains a while statement: if the “frontIsClear”, Java

understands this is true, then executes the following command: “move” on line 20. Another

example is on line 54 when the while statement replaces a simple “turnAround” command.

In this instance, if we did not know where the wall would be, we could not determine when to

turn around. However, if we use a while loop to allow the robot to turn around once it does reach

a wall we remove the unknown variable and the program runs without crashing.

How do we correctly write a while loop statement? We begin with the correct syntax,

parenthesis, who will perform the command, what the command is and parenthesis:

while (<robot name or <this>>.service to be true or false ())

Then Java needs to know where the command, that is true, is. We let Java know this by using an

open bracket, ({) to represent the start and a closed (}) bracket, to represent the finish.

Lastly in between those brackets write the action the robot should execute. Take note that if the

command is in main, use the name of the robot that will be doing the action, vs. if the command

is called out in a public void scenario where, you would want to be consistent and use
this.

 {

Command call out this.<<action>>();

 }

 {

Main statement Eddie.<<action>>();

 }

Help With The Logic:

This is good to use whenever you want to repeat a command for every instance its true, it is also

good to use when you have unknown variables such as undefined lengths in between x command

and y command, undefined number or objects or “Things” and when you have a set of

commands you would like to repeat.

Important Details:

 Always evaluate whether you need an “if” statement, which is executed only once if true,

or a “while” loop, which is repeatedly executed until it is false.

 Remember that if the while loop is true, it will execute all commands within the brackets

in order. It is important to note that the program can still crash while executing the

commands even if the while loop is true. Any command wished to be completed after the

statement is no longer true, should be put outside the closing bracket.

Licensing

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Unported License

Plagiarism

If you believe that some or all of this document infringes on your intellectual property (i.e., part or all of

this document is copied from something you've written) please immediately contact Mike Panitz at

Cascadia Community College (perhaps using the Faculty And Staff Directory at

http://www.cascadia.edu/pages/searchtemplate.aspx)

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cascadia.edu/pages/searchtemplate.aspx
http://creativecommons.org/licenses/by-nc-sa/3.0/

