
Basic “If” Statements 

Authors: Beshoy Sarkis 

      Orion Steinbrueck 

Assignment Definition and General Feedback by Michael Panitz 
at Cascadia Community College (http://www.cascadia.edu) 

 

Table of Contents 

 Quick Summary 

 When to Use and Avoid Method 

 Example of Usage 

 Example Trace 

 Syntax Explanation 

 Help With The Logic 
 

Quick Summary: 

There are times when you are writing code that you cannot use a move command 

or a pick command because you do not know if there is a wall in front of the robot 

or if there is a “thing” underneath a robot. However, there is a way to have a 

robot safely check to see if there is a wall in front of it or check to see if it can pick 

a “thing” and have it enforce the move or pick command only if it is safe. This can 

be achieved through the “if” statement. 

When the “if” statement is called, the program asks a question and receives a 

true or false answer. A few examples of these questions are asking if the front of 

the robot is clear or if the robot can pick a thing. 
 

When to Use and 

Avoid Method: 

A good question to ask 

is when you should use 

this new command. An 

http://www.cascadia.edu/


example of when to use this command is when you need to pick a thing up but 

the position of the wall is generated randomly and you do not know if your front 

is clear. 

(See Figure above to get a picture of the city that I am describing.) 

An example of where you should NOT use this command is if you, as the 

programmer, know the layout of the city and the coordinates of the walls. 

The statement is not a loop and can only ask the true or false question once. This 

means that it will only check if the question has a true or false answer once, then 

it will move forward to the other commands. Unlike the while loop the “if” 

command will not repeat itself.  

Another area that you might want to use this command is if you wanted to place a 

thing while you moved but you do not want to put a thing where a thing is already 

there. You can do this by:  

Note: This is a code snippet 

By placing this command in your code, you guarantee that on your next move, 

you will not place a thing in an intersection where there is a thing already there. 
 

Example of Usage 

Here we will look at how to write the code into java. After creating the city, robot, 

walls, and things let us look at the bolded code below. The typed commands for 

having the robot check one space before to see if it is safe to move or not. Notice 

that in the line after the “if” statement there is a {. This tells java that if the if 

statement returns true, the commands that the robot should carry out is between 

the curly braces. After you are done typing the code for the “if" statement, be 

sure that you closed the curly brace with a closed curly brace}. 

The same thing has been done with the “if you can pick up a thing” command.  

We can also place the “if” statement in a public void. If you look at the first 

highlighted section in the sample code below, we define the safeMove in a public 

void. Make sure to place the curly braces after the public void and at the end of 

If(!canPickThing()) 
{  
ian.putThing()) 
} 



the commands inside the public void. Another thing to notice is that instead of 

using the name of the robot, we use “this”. This is done because if you were to 

have multiple robots and you needed them to call this command, the “this” gets 

replaced with the name of the robot that called the safeMove command. 

 

Line  Code 

1       import becker.robots.*; 

2 class Robot1 extends Robot 

3 { 

4 public Robot1(City c, int st, int ave, Direction dir, int 

num) 

5 { 

6 super(c, st, ave, dir, num); 

7 } 

8 public void safeMove( ) 

9 { 

10        If (this.frontIsClear( ) ) 

11            { 

12                 this.move( ); 

13             } 

14 } } 

15 public class Decision extends Object 

16 { 

17    public static void main(String[] args) 

18     { 

19       City toronto = new City(); 

20      Robot1 bob = new Robot1 (toronto, 3, 1, Direction.EAST, 0); 

21           new Thing(toronto, 3, 2); 

22       new Wall(toronto, 3, 4, Direction.EAST); 

23  // new Wall(toronto, 2,3, Direction.WEST);  

24  If (bob.frontIsClear( ) ) 

25         { 

26             bob.move( ); 

27         } 

28  If (canPickThing( ) ) 

29        {     

30            bob.pickThing(); 

31        } 

32 bob.move(); 

33  If (canPickThing( ) ) 

34       {     



35            bob.pickThing(); 

36        } 

37 bob.turnLeft(); 

38 bob.move(); 

39    } 

40 } 
 

 

The code above produces the city on the right. 
 

 

 

 

 

 

 

 

Example Trace 

Now that we looked at how to write the code, let us look at how we trace it.  
 

Line
# 

Program Statement Bob 
St  # 

Bob 
Ave 

# 

bob Dir Bob 
Back

pack 

Thing Wall True/False 

12  City toronto = new City(); - - - - - - - 

13  RobotThatMakesDecisions bob = new 
RobotThatMakesDecisions (toronto, 3, 1, 
Direction.EAST, 0); 

3 1 East - - - - 

14        new Thing(toronto, 3, 2); 3 1 East - 3,2 - - 

15 
  

      new Wall(toronto, 3, 4, Direction.EAST); 3 1 East - 3,2 3,4  

16 If (bob.frontIsClear( ) ) 3 1 East - 3,2 3,4 True 

18 bob.move( ); 3 2 East - 3,2 3,4 - 

20 If (bob.canPickThing( ) ) 3 2 East - 3,2 3,4 True 

22 bob.pickThing(); 3 2 East 1 - 3,4 - 

24  bob.move(); 2 2 North 1 - 3,4 - 

25 
  

If (canPickThing( ) ) 2 2 North 1 - 3,4 False 

29 bob.turnLeft(); 2 2 West 1 - 3,4 - 

30 bob.move(); 1 2 West 1 - 3,4 - 

 



Notice that when tracing an if statement, the command of moving or picking up a 

thing doesn’t occur until the actual move or pick thing command is called. It is 

asking a question that will return back a true or false. Then depending on the 

answer, the next command will be decided. For example, the last “if can pick 

thing command” returned false and thus we did not apply the commands in that 

“if” statement. 

 

Syntax Explanation 

 

When writing this command in the code above, there are a few things that you 

have to watch out for. First thing to notice is that we have to write the name of 

the robot in the “if” statement, unless it is in a public void. If you look at the code 

above, it is stated that the name of the robot in both the “move” and the “pick 

thing” commands. 

Second thing to watch out for are the use of the curly braces. In order for your 

code to be successful, you must be organized in the placement of your curly 

braces. Notice how they are lined up with each other so that you can easily see 

which curly brace pairs with the other. You can indent the curly braces by clicking 

on the left side of one and clicking the “tab” key once. 

Also, the capitalization of words is essential for your code to work. The “if” must 

be lowercase and have a pair of parenthesis after it. And in that pair of 

parenthesis, you place question. 

Finally, the fourth thing to look out for is the normal parentheses in the “if” 

command. After the “if”, you place an open parenthesis then write the command. 

Afterwards you make open then closed parentheses like you would in a normal 

command. Finally you end the command with a closing parenthesis. 

 

Help With the Logic 

If you are still not sure how this command works, you should read the following 

paragraph. 

Let’s say that there is a city which randomly generates its walls, things, and robot 

locations. When writing code for this city to make the robot go from point A to 



point B, you cannot simply place a move command because the robot might move 

into a wall and crash. A way of getting around that is by placing an “if” statement. 

This statement asks the robot a question; in this case it asks whether the front is 

clear to move. This question returns back a true or a false answer. If the answer is 

true, then the program executes the commands within the { } after the statement. 

If the answer returns false, then the program moves on to the command after the 

“if” statement and skips the commands within the { }. 
 

Licensing 

 
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 

Unported License 

Plagiarism 

If you believe that some or this entire document infringes on your intellectual 

property (i.e., part or this entire document is copied from something you've 

written) please immediately contact Mike Panitz at Cascadia Community College 

(perhaps using the Faculty and Staff Directory at 

http://www.cascadia.edu/pages/searchtemplate.aspx) 

 

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cascadia.edu/pages/searchtemplate.aspx
http://creativecommons.org/licenses/by-nc-sa/3.0/

