
Advanced Robot Commands

Edward Rusu

Assignment Definition And General Feedback By Michael Panitz

at Cascadia Community College (http://www.cascadia.edu)

Table of contents:

 Quick Summary

 When To Use (or Avoid) This

 Example Of Usage

 Example Trace

 Syntax Explanation

 Help With The Logic

 Try it Yourself

Quick Summary

In Java, you can use multiple advanced robot commands to make your robot perform certain

things. Advanced robot commands are any command beyond move, turnLeft, pickThing, and

putThing. By using these commands together, your robot’s potential greatly increases.

When to Use This / Avoid This

There are many things you can do with move, turnLeft, pickThing, and putThing, but as you

continue writing java, you’ll find that those four commands just don’t cut it. This is where

advanced robot commands come in. Advanced robot commands are a must for anyone writing

java.

However, sometimes it’s easier to use beginning level command to accomplish a certain task. As

you continue writing java, you will develop a sense of when to use advanced robot commands.

Example of Usage

We will cover six useful advanced robot commands. They are:

canPickThing—We’ve all experienced the dreaded Crash! from telling our Robot to pick up

something when there’s nothing there. With canPickThing, you can make sure that there is

something there for your Robot to pick up.

countThingsInBackpack—every Robot can carry Things. This command allows you to analyze

the number of Things in the Robot’s “backpack.” Because there is no command “canPutThing,”

this command is often used with a true/false statement to get the same effect.

http://www.cascadia.edu/

frontIsClear—Worse than our Robot crashing while trying to pick up something is crashing into

a wall. frontIsClear allows you test whether or not there is a wall in your way. This is particularly

useful in maps that randomly generate walls.

getAvenue—Humans often get lost. Robots are the same. Sometimes, a Robot just needs to

know where it is. With this command, you can ask the Robot for its avenue and proceed from

there.

getStreet—Equally important as getAvenue, getStreet allows to ask the Robot what street it’s

on. When combined with getAvenue, it becomes a powerful command.

getDirection—With so many turnLefts in the mix, getDirection is all important. If you ever get

dizzy, just ask your Robot to getDirection, and you’ll know which way you’re facing.

*Please note: An answer will not be displayed on your screen unless you explicitly say so. If you

write countThingsInBackpack, your robot will know how many things there are and be able to

make decisions based on that, but a number will not appear telling you the number. The same is

true for getDirection. You will not see a big flashing “WEST.”

Follow along with the following code by opening advanced_robot_commands.java

Line Code

1 import becker.robots.*;

2

3 public class advanced_robot_commands extends Object

4 {

5 public static void main(String[] args)

6 {

7 City seattle = new City();

8 Robot jo = new Robot (seattle,0,0,Direction.EAST,0);

9 Robot mary = new Robot(seattle, 0, 3, Direction.NORTH,0);

10 new Thing(seattle,0,0);

11 new Wall(seattle,3,2,Direction.SOUTH);

12

13 //that was all code to set up the city

14

15 if(jo.canPickThing()) //safer way to pick things up

16 {

17 jo.pickThing();

18 }

19

20 jo.move();

21

22 if(jo.canPickThing()) //safer way to pick things up

23 {

24 jo.pickThing();

25 }

26

27 jo.move();

28

29 if(jo.countThingsInBackPack() > 0) //safer way to put things down

30 {

31 jo.putThing();

32 }

33

34 jo.turnLeft();

35 jo.turnLeft();

36 jo.turnLeft();

37 jo.move();

38

39 if(jo.countThingsInBackpack() > 0) //safer way to put things down

40 {

41 jo.putThing();

42 }
43

44 while(jo.frontIsClear()) //safer way to move
45 {
46 jo.move();
47 }
48
49 jo.turnLeft();
50
51 while(jo.getAvenue() < mary.getAvenue() //smarter way to move
52 {
53 jo.move();
54 }
55
56 if(jo.getStreet() == 3) //smarter way to move
57 {
58 if(jo.getAvenue() == 0) //smarter way to move
59 {
60 jo.move();
61 }
62 }
63
64 if(jo.getDirection() == Direction.EAST //smarter way to move
65 {
66 jo.move();
67 }
68 }

69 } //close program

Example Trace:

Notice that none of these commands are action commands. It doesn’t help much to only ask the

Robot if the front is clear because it won’t actually make the Robot do anything (like move).

Thus, these advanced robot commands are all used conditionally. If circumstance meet that

condition (If countThingsInBackpack is greater than 0), then the Robot will do whatever is in the

braces {}.

In order to go over these details more thoroughly, here is a (partial) trace of the above program,

with some additional explanation afterwards

Line

Program Statement Jo

St
Jo

Ave
Jo

Direction
Jo

bac

kpa

ck

True or

False
Ma

ry

St

Mary

Ave
Thing Wall

5 *program starts - - - - - - - - -

7 City seattle = new City(); - - - - - - - - -

8 Robot jo = new Robot

(seattle,0,0,Direction.EAST,0);

0 0 E 0 - - - - -

9 Robot mary = new Robot(seattle,

0, 3, Direction.NORTH,0);

0 0 E 0 - 0 3 - -

10 new Thing(seattle,0,1); 0 0 E 0 - 0 3 (0,1) -

11 new

Wall(seattle,3,2,Direction.SOUT

H);

0 0 E 0 - 0 3 (0,1) (3,2,S)

15 if(jo.canPickThing()) 0 0 E 0 False 0 3 (0,1) (3,2,S)

20 jo.move(); 0 1 E 0 - 0 3 (0,1) (3,2,S)

22 if(jo.canPickThing()) 0 1 E 0 True 0 3 (0,1) (3,2,S)

24 jo.pickThing(); 0 1 E 1 - 0 3 - (3,2,S)

27 jo.move(); 0 2 E 1 - 0 3 - (3,2,S)

29 if(jo.countThingsInBackpack() >

0)

0 2 E 1 True 0 3 - (3,2,S)

31 jo.putThing(); 0 2 E 0 - 0 3 (0,2) (3,2,S)

34 jo.turnLeft(); 0 2 N 0 - 0 3 (0,2) (3,2,S)

35 jo.turnLeft(); 0 2 W 0 - 0 3 (0,2) (3,2,S)

36 jo.turnLeft(); 0 2 S 0 - 0 3 (0,2) (3,2,S)

37 jo.move(); 1 2 S 0 - 0 3 (0,2) (3,2,S)

39 if(jo.countThingsInBackpack() > 1 2 S 0 False 0 3 (0,2) (3,2,S)

0)

44 while(jo.frontIsClear()) 1 2 S 0 True 0 3 (0,2) (3,2,S)

46 jo.move(); 2 2 S 0 - 0 3 (0,2) (3,2,S)

44 while(jo.frontIsClear()) 2 2 S 0 True 0 3 (0,2) (3,2,S)

46 jo.move(); 3 2 S 0 - 0 3 (0,2) (3,2,S)

44 while(jo.frontIsClear()) 3 2 S 0 False 0 3 (0,2) (3,2,S)

49 jo.turnLeft(); 3 2 E 0 - 0 3 (0,2) (3,2,S)

51 while(jo.getAvenue() <

mary.getAvenue())

3 2 E 0 True 0 3 (0,2) (3,2,S)

53 jo.move(); 3 3 E 0 - 0 3 (0,2) (3,2,S)

51 while(jo.getAvenue() <

mary.getAvenue())

3 3 E 0 False 0 3 (0,2) (3,2,S)

56 if(jo.getStreet() == 0) 3 3 E 0 True 0 3 (0,2) (3,2,S)

58 if(jo.getAvenue() == 0) 3 3 E 0 False 0 3 (0,2) (3,2,S)

64 if(jo.getDirection() ==

Direction.EAST)

3 3 E 0 True 0 3 (0,2) (3,2,S)

66 jo.move(); 3 4 E 0 - 0 3 (0,2) (3,2,S)

Don’t get caught up in all the true/false statements. Focus on what the Robot is doing. When you

ask canPickThing, the answer is true because jo is standing over the thing. Because the answer is

true, jo picks the thing up. When you ask countThingsInBackpack, we see the answer is 1. But

it’s not worth anything to know that there is 1 thing in his backpack. Because we put it in a

conditional statement, however, he will proceed to putting something down. This is the substitute

for the missing command canPutThing. In some cases, the answer is false. When we ask

getStreet == 3 and getAvenue == 0, we see that jo is not on 3,0 but on 3,3. Note, the program

still returned his street and avenue, but because it only matched one of our conditions, not both

of them, nothing happened. Take a moment to make sense of the other ones. Remember, don’t

get caught up in the if and while statements. Focus on what each advanced robot command does.

Syntax Explanation:

Note on syntax of command: Because these commands are defined in the becker.robot file, you

must write them exactly as they appear above, i.e. make sure you capitalize the right letters.

Let’s focus specifically on one of our advanced robot commands to work out what all the syntax

means

We can enhance the code:

jo.putThing();

to be a safer way of putting things down:

if(jo.countThingsInBackpack() > 0)

{

 jo.putThing();

}

Notice the code that is highlighted. This is the stuff we add to make our robot crash-proof when

he puts something down. On the first line, we write an if statement. An if statement sets a

condition. That condition is specified in the parenthesis. The word if must be lowercase. You

must start the condition with an open parenthesis. (For more information, see the section on if

statements). Write the robot’s name, in this case jo. Then write a period and the advanced robot

command. In this example, we use countThingsInBackpack(). Please note that the command

must be spelled and capitalized exactly as written here. countThingsInBackpack() looks inside

the robots backpack and returns a number. You do not see that number (unless you specify to),

but your computer knows what it is. By using > 0, we specify that the number of things in the

robot’s backpack must be greater than zero. We could have said == 0, < 0, >24, and really any

combination of inequalities and numbers, but for the sake of this command, we use > 0. The

computer compares the number of things in the robot’s backpack to the number we specify. If

the is backpack carries more items than our number, than the robot proceeds to do what is

defined in the braces. (Note: you must have open and closed brace around any command you

want to test against your if statement.) However, if the number in his backpack is less than zero,

the computer skips anything in the braces, keeping the robot from trying to put anything down

when he doesn’t have anything to put.

Help With The Logic

Note that working with advanced robot commands makes everything you do with the Robot safer

and smarter. With these advanced robot commands, the robot first checks to make sure it can do

what you’re asking without crashing.

Try it Yourself

Open try_it_yourself.java and see if you can enhance your robot using advanced robot

commands.

Licensing

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Unported License

Plagiarism

If you believe that some or all of this document infringes on your intellectual property (i.e., part or all of

this document is copied from something you've written) please immediately contact Mike Panitz at

Cascadia Community College (perhaps using the Faculty And Staff Directory at

http://www.cascadia.edu/pages/searchtemplate.aspx)

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cascadia.edu/pages/searchtemplate.aspx

