

Lecture 18

Bits and Pieces

grades = new int[5];

grades is a named reserved space set aside to hold exactly five [5] 32-bit elements all
initializing to a value of zero 0. As we have learned about programming languages, the
“index” always starts at 0, not 1, and procedes until the size of the array is reached. In our
example, since we declared [5] the array element index starts with 0 and ends at 4.

array element index

space reserved for data

value initialized in element

0 1 2 3 4

32-bits 32-bits 32-bit 32-bits 32-bits

0 0 0 0 0

index grades

0 100

1 89

2 96

3 100

4 98

5

grades

grades[0] = 100; // Steps 3
grades[1] = 89;
grades[2] = 96;
grades[3] = 100;
grades[4] = 98;

grades = new int[5]; // <-- Steps 1 & 2

0 1 2 3 4

100 89 96 100 98

STEP 1: Declare Variable
STEP 2: Allocate Memory
STEP 3: Initialize Elements

Off-by-one Errors
It is very easy to be “off-by-one” when accessing arrays

// This code has an off-by-one error.
int[] numbers = new int[100];
for (int i = 1; i <= 100; i++)

// Would work with < only
{

 numbers[i] = 99;
}

Here, the equal sign allows the loop to continue on to
index 100, but 99 is the last index in the array

This code would throw an
ArrayIndexOutOfBoundsException

Array of Objects Declaration
 Card[] deck = new Card [52]; // declares an array of type Card

● In this case, each element is initialized to null pointer.

● SO, we need to initialize each element and give it a value

 int index = 0;

 for (int suit = 0; suit < 4; suit++) {

 for (int rank = 1; rank <= 13; rank++) {

 deck[index] = new Card (suit, rank); // call the constructor

 index++;

 }

 }

Encapsulation
Encapsulate: to show or express the main idea or
quality of (something) in a brief way,

to completely cover (something) especially so that it will
not touch anything else

In programming, encapsulation refers to the bundling of
data with the methods that operate on that data.

● Groups related data and methods

● Suggests protecting (making private) object attributes

● Reduces collisions of like-named variables

● Allows for refactoring by making code segments
independent

Class Separation

GuessingGame Class

Attributes:
● RandomNumber
● MaxGuesses
● NumberGuesses
● GuessArray

Methods:
● ResetGame
● PlayGame
● SetDifficulty

Game Program:
Instantiates GuessingGame
Text entry interface

Game App:
Instantiates GuessingGame
Cell Phone graphical app

Quest with Mini-games:
Instantiates GuessingGame
Guessing game used as
conflict resolution

Logical Operators
Logical Operators
AND
A && B are true only if both A and B are true

&&
OR
A || B are true if A is true or B is true or they're both true

||

NOT
!A is the opposite of A.
If A is true, then !A is false.
If A is false, !A is true.

!

&&

&&

&&

||

||

||

||

TRUE TRUE TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE FALSE TRUE

FALSE TRUE FALSE FALSE TRUE TRUE

FALSE FALSE FALSE

 AND Operator OR Operator

The double ampersand && and double pipe || are called “short circuit” logical operators

Reading in integers

26 while (currentguess < MaxGuesses) {
27 while (!keyboard.hasNextInt()) {
28 System.out.println("Please enter a valid integer.");
29 keyboard.nextLine();
30 }
31 int newguess = keyboard.nextInt();
32 keyboard.nextLine();
33 if (newguess < 0 || newguess > 15) {
34 System.out.println("Please enter an integer between 0 and 15.");

Need to check for an integer

Should also check for the validity of the guess

Need to clear buffer for next entry

Printing part of an array

20 private void printPrevGuesses (int currentguess) { // currentguess is 0 based
21 for (int i = 0; i <= currentguess; i++) {
22 System.out.print ("Guess " + i + ": " + guessList[i] + ", ");
23 }
24 System.out.println(""); // put in a return
25 System.out.println(MaxGuesses-currentguess-1 + " guesses left!");
26 }

“<=” means we include this guess

There is some funny math here because arrays are
Zero-based but our human number sense isn't!

Note: We aren't printing the entire array.length

Class / Instance Variables

 5 class MazeRunner extends Robot {
 6 // this is a class variable, all MazeRunners have the same name.
 7 static public String name = "Ridley";
 8
 9 //keyIn is an instance variable so any method of MazeRunner can use it without
 10 //needing to create a new one each time.
 11 private Scanner keyIn = new Scanner(System.in);
 12 // instance variables to store step counts
 13 private int numSteps;

In main:

System.out.println (MazeRunner.name);

Produces:

 ----jGRASP exec: java MazeWorld
MM§MRidley

Break / Continue / Return

● A break; in a loop code block exits the loop
and proceeds to the first line after the loop

● A continue; in a loop code block returns to
the conditional statement to possibly restart
the code block

● A return; exits a method and returns to
the calling method

– You send data back to the caller with
return(<something of return data
type>);

Refactoring
● Refactoring is the process of refining code, and

restructuring it so it is simpler, more elegant,
more efficient, easier to maintain, etc.

● Look for lines of code doing basically the same thing

– Put them in a loop, or in a new method

● Look for two functions doing the same thing

– Add a helper method to do that

● Look for functions that have too many jobs

– Extract out sub jobs

● Move something to a super class

– If you have two very similar classes, they can both inherit from one
super class

● Simplify your conditionals

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

