

Lecture 14

'for' loops and Arrays

For Loops

for (initiating statement; conditional statement; next statement)
 // usually incremental
{
 body statement(s);
}

The for statement provides a compact way to iterate over a range
of values. Programmers often refer to it as the "for loop" because
of the way in which it repeatedly loops until a particular condition
is satisfied.
The general form of the for statement can be expressed as above.

Yay! You can use this instead of a counting-while-loop!!

For Loops

for (initiating statement; conditional statement; next statement)
 // usually incremental
{
 body statement(s);
}

class ForLoopDemo
{
 public static void main(String[] args)
 {
 for(int count = 1; count < 11; count++)
 {
 System.out.println("Count is: " + count);
 }
 }
}

The output of this
program is:

Count is: 1
Count is: 2
Count is: 3
Count is: 4
Count is: 5
Count is: 6
Count is: 7
Count is: 8
Count is: 9
Count is: 10

For Loops

 for(int count = 1; count < 11; count++)
 {
 System.out.println("Count is: " + count);
 }

There are three clauses in the for statement.

• The init-stmt statement is done before the loop is started, usually to initialize an iteration
variable (“counter”). After initialization this part of the loop is no longer touched.

• The condition expression is tested before each time the loop is done. The loop isn't executed if
the Boolean expression is false (the same as the while loop).

• The next-stmt statement is done after the body is executed.
It typically increments an iteration variable (“adds 1 to the counter”).

For or While?

The for loop is shorter, and
combining the intialization,
test, and increment in one
statement makes it easier
to read and verify that it's
doing what you expect.

The for loop is better when
you are counting
something.

If you are doing something
an indefinite number of
times, the while loop is be
the better choice.

For or While?

class WhileDemo {
 public static void main(String[] args){
 int count = 1;
 while (count < 11) {
 System.out.println("Count is: " + count);
 count++;
 }
 }
}

class ForLoopDemo {
 public static void main(String[] args {
 for(int count = 1; count < 11; count++){
 System.out.println("Count is: " + count);
 }
 }
}

Do-While Loops
The Java programming language also provides a do-while statement, which can
be expressed as follows:

do {
 statement(s)
} while (expression);

The difference between do-while and while is that do-while evaluates its expression at
the bottom of the loop instead of the top. Therefore, the statements within the do block
are always executed at least once, as shown in the following DoWhileDemo program:

class DoWhileDemo
{
 public static void main(String[] args)
 {
 int count = 1;
 do {
 System.out.println("Count is: " + count);
 count++;
 } while (count < 11);
 }
}

While or Do-While?

If-else Statements

if(Boolean_expression){
 statement 1 //Executes when true
}else{ //<-- No Conditional
 statement 2 //Executes when false
}

public class IfElseTest {
 public static void main(String args[]) {
 int x = 30;
 if(x < 20){
 System.out.print(“The number is less than 20.");
 }else{
 System.out.print(“The number is NOT less than 20!");
 }
 }
}

Several If Statements
int grade = 98;

if(grade >=0 && grade < 60)
{
 System.out.println(”Sorry. You did not pass.”);
}

if(grade >= 60 && grade < 70)
{
 System.out.println(”You just squeaked by.”);
}

if(grade >= 70 && grade < 80)
{
 System.out.println(”You are doing better.”);
}

if(grade >= 80 && grade < 90)
{
 System.out.println(”Not too bad a job!”);
}

if(grade >= 90 && grade <= 100)
{
 System.out.println(”You are at the top of your class!”);
}

Cascading If Statements
 int grade = 68;

 if(grade >=0 && grade < 60) {
 System.out.println("Sorry. You did not pass.");
 }
 else {
 if(grade >= 60 && grade < 70) {
 System.out.println("You just squeaked by.");
 }
 else {
 if(grade >= 70 && grade < 80) {
 System.out.println("You are doing better.");
 }
 else {
 if(grade >= 80 && grade < 90) {
 System.out.println("Not too bad a job!");
 }
 else //(grade >= 90 && grade <= 100)
 {
 System.out.println("You are at the top of your class!");
 }
 }
 }
 }

Cascading If Statements

 int grade = 68;

 if(grade >=0 && grade < 60)
 {
 System.out.println("Sorry. You did not pass.");
 }
 else if(grade >= 60 && grade < 70)
 {
 System.out.println("You just squeaked by.");
 }
 else if(grade >= 70 && grade < 80)
 {
 System.out.println("You are doing better.");
 }
 else if(grade >= 80 && grade < 90)
 {
 System.out.println("Not too bad a job!");
 }
 else // <-- No conditional
 {
 System.out.println("You are at the top of your class!");
 }

Cascading If Statement
if (this.frontIsBlocked())
{ this.turnAround();
} else if (this.canPickThing())
{ this.turnRight();
} else if (this.leftIsBlocked())
{ this.turnLeft();
} else
{ this.move();
}

Switch statement
The switch statement is similar to the cascading-if statement in that both are designed to
choose one of several alternatives. The switch statement is more restrictive in its use,
however, because it uses a single value to choose the alternative to execute. The
cascading-if can use any expressions desired. This restriction is also the switch statement’s
strength: the coder knows that the decision is based on a single value.

 switch (expression)
 {
 case value1 :
 statement(s) when expression == value1;
 break;
 case value2 :
 statement(s) when expression == value2;
 break;
 case value3 :
 statement(s) when expression == value3;
 break;
 default :
 statement(s) if no previous match;
 }

Switch Statement

Switch Statement
 int score = 8;

 switch (score)
 {
 case 10:
 System.out.println ("Excellent.");

 // intentional fall-through
 case 9:
 System.out.println (“Well above average.");
 break;
 case 8:
 System.out.println (“Above average.");
 break;
 case 7:
 case 6:
 System.out.print ("Average. You should seek help.");
 break;
 default :
 System.out.println ("Not passing.");
 }

Control Statement Review

Introduction to Arrays

So far, you have been working with variables that hold only one value. The
integer variables you have set up have held only one number (and later in
the quarter we will see how string variables will hold one long string of
text).

An array is a collection to hold more than one value at a time. It's like a list
of items.

Think of an array as like the columns in a spreadsheet. You can have a
spreadsheet with only one column, or several columns.

The data held in a single-list (one-dimensional) array
might look like this:

grades

0 100

1 89

2 96

3 100

4 98

Declaring Arrays

NOTE:
Arrays must be of the same data type,
i.e., all integers (whole numbers) or all
doubles (floating-point numbers) or all
strings (text characters)—you cannot
“mix-and-match” data types in an array.

grades

0 100

1 89

2 96

3 100

4 98

int[] grades;

The difference between setting up a normal integer
variable and an array is a pair of square brackets after the
data type. The square brackets tells Java that you want to
set up an integer array. The name of the array above is
grades.

The sqauare brackets don't say how many
positions the array should hold. To do that,
you have to set up a new array object:

grades = new int[5];

In between the square brackets you need the
pre-defined size of the array. The size is how
many positions the array should hold. If you
prefer, you can put all that on one line:

int[] grades = new int[5];

Putting Values into Arrays
grades

0 100

1 89

2 96

3 100

4 98

grades [0] = 100;
grades [1] = 89;
grades [2] = 96;
grades [3] = 100;
grades [4] = 98;

This is called the index

Length of the
array is equal to
the number of
slots declared{

After this line is executed, Java will assign default values for the array (0 for an integer array). To
assign values to the various positions in an array, you do it in the normal way:

grades[0] = 100;
grades[1] = 89;
grades[2] = 96;
grades[3] = 100;
grades[4] = 98;

If you know what values are going to be in the array, you can set them up like this instead:

int[] grades = { 100, 89, 96, 100, 98 }; // Java treats as a
 // new instance

You can also declare the int separately and call it by its given
name, like this:

int summer2012 = 5;
int[] grades = new int[summer2012];

We are telling Java to set up an array with 5 positions in it.

Array notes

● Arrays have a built in value length:
– Int []myArray = new int [5];

– MyArray.length returns 5

● Constructing an array with new makes space
for length * dataType memory

● In Java (and most other modern languages),
indices are zero based – the first value is in
myArray[0], the last in myArray[length-1].

– This means you can write loops with just a <:

– for (int j=0; j < myArray.length; j++) {

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

