
Variables and Classes

In which we over-ride the super class, work with
multiple classes, and move towards non-robot

based programming

Classes

Reminders:

●Classes are generic, instances
(or objects) are specific
versions.

●Classes contain data
(attributes) and methods
(services) associated with a
coherent idea.

Class <NewClassName> extends <SuperClass> {

Class attributes:
<datatype> <instanceVariableName>
Static <datatype> <class Variable Name>

Class services:
<return datatype> <methodName> () {

<datatype> <localVariableName>
// code block defining service
// behavior.

}

Variable Types
Variable Type How it is defined Scope (how

long it lasts)
Uses

Local Variable <type> Name = value;
In function or method
code block.

Until the closing
bracket for the
code block it is in.

Temporary use in a
method, or loop.

Parameters <type> Name in
method declaration.
Value is passed when
method is called

For the duration of
the Method.
Copies value
inside of variable.

Passing information
to a Method.

Instance Variables
(Non-static Fields)

<type> Name during
class definition

For the lifetime of
an object (an
instance of the
class)

Values that help
define an instance of
the class and persist
through multiple
service calls

Class Variables
(Static Fields)

Static <type> Name
during class definition

For the life time of
the class (can be
accessed through
class definition)

Values that are the
same for EVERY
instance of the class

Over-riding inherited methods
import becker.robots.*;

public class MrRoboto extends Robot
{ // Construct a new MrRoboto
public MrRoboto(City theCity, int street, int avenue, Direction aDirection)
{
super(theCity, street, avenue, aDirection);

}

public void turnAround()
{
this.turnLeft();
this.turnLeft();

}

public void move3()
{
this.move();
this.move();
this.move();

}

public void turnRight()
{
this.turnAround();
this.turnLeft();

}
}

*All public methods are inherited by a subclass

Over-riding

Java allows us to override methods
inherited from the superclass using the
super. (‘super dot’) keyword in the
method.

Both the original method and the overriding
method must:
•have the same name
•declare the same data type
•accept same number of parameters
•return the same data type (we’ll be going
over return in the next lecture)

Overriding allows classes polymorphism:
subclasses support all behavior of
superclasses, but may implement it in
ways specific to the subclass.

Overriding: Use Super
public class SpinningRobot extends Robot
{ // Construct a new SpinningRobot
public SpinningRobot(City theCity, int street, int avenue, Direction aDirection)
{
super(theCity, street, avenue, aDirection);

}

public void turnAround()
{
this.turnLeft();
this.turnLeft();

}

public turnLeft() // override the turnLeft so the robot spins!
{
super.turnLeft(); // can't use “this.turnLeft();” because it would refer
super.turnLeft(); // back to the SpinningRobot version and cause

super.turnLeft(); // an infinite loop.
super.turnLeft();
super.turnLeft();

}

Again: Classes are Building blocks!

●New classes can
inherit from subclasses,
and the same rules
apply.
●Most code is made of
many, many classes.
–(Robot class, City
class, Scanner class,
Random class, etc.)

Multiple Files

Things to remember when dealing with multiple .java files:
•class name must match file name
•All files must be grouped together in the same area (folder, directory,
desktop, drive, etc.)
•jGrasp automatically saves any changes made in the class files when
compiling main

•a main file
•one or more class/method files
•an optional .txt text file for configuration, additional input, or
output (like creating a log file)

Separating main from new classes and new class methods to
create more manageable code

Using only one file
import becker.robots.*;

public class MrRoboto extends Robot
{

// Construct a new MrRoboto
public MrRoboto(City c, int s, int a, Direction d)
{ super(c, s, a, d);
}

public void turnAround()
{ this.turnLeft();

this.turnLeft();
}

public void move3()
{ this.move();

this.move();
this.move();

}

public void turnRight()
{ this.turnAround();
this.turnLeft();

}

public static void main(String[] args)
{ City lfp = new City();

MrRoboto lisa = new MrRoboto(lfp, 3, 2, Direction.SOUTH);

lisa.move3();
lisa.turnRight();
lisa.move3();
lisa.turnAround();
lisa.move3();
lisa.turnLeft();
lisa.move3();
lisa.turnAround();

}
}

import becker.robots.*;

class MrRoboto extends Robot
{

public MrRoboto(City c, int s, int a, Direction d)
{ super(c, s, a, d);
}

public void turnAround()
{ this.turnLeft();

this.turnLeft();
}

public void move3()
{ this.move();

this.move();
this.move();

}

public void turnRight()
{ this.turnAround();

this.turnLeft();
}

}

public class MrRobotoMain extends Object
{

public static void main(String[] args)
{

City lfp= new City();
MrRoboto lisa = new MrRoboto(lfp, 3, 2, Direction.SOUTH);

lisa.move3();
lisa.turnRight();
lisa.move3();
lisa.turnAround();
lisa.move3();
lisa.turnLeft();
lisa.move3();
lisa.turnAround();

}
}

Using Two Files!

In this case, since there are two files, then
the class names must match the files names,
and both files must be in the same
folder/directory. Each file needs to include
the line import becker.robots.*; as well.

Always compile the file
that contains main when
working with multiple
files, since you cannot
compile a file that does
not contain main

import becker.robots.*; Needs its own ‘import’ statement

class MrRoboto extends Robot
{

// Construct a new MrRoboto
public MrRoboto(City theCity, int avenue, int street, Direction aDirection)
{ super(theCity, avenue, street, aDirection);

}

public void turnAround()
{ this.turnLeft();

this.turnLeft();
}

public void move3()
{ this.move();

this.move();
this.move();

}

public void turnRight()
{ this.turnAround();

this.turnLeft();
}

}

import becker.robots.*; Needs its own ‘import’ statement

public class MrRobotoMain extends Object
{

public static void main(String[] args)
{

City bothell = new City();
MrRoboto lisa = new MrRoboto(bothell, 3, 2, Direction.SOUTH);

lisa.move3();
lisa.turnRight();
lisa.move3();
lisa.turnAround();

}
}

Debugging using println

Using System.out for simple debugging

In a method:
System.out.println(this);

In an object (for example, a Robot object named rigby):
System.out.println(rigby);

[street=1, avenue=4, direction=EAST, isBroken=false, numThingsInBackpack=3]

In an object (for example, a Thing object named t1):
System.out.printlin(t1);

[street=1, avenue=4]

Packages
●Two java files in the same folder are compiled into the
same package, and thus can reference each other.
●Java provides a method for creating packages, which
can then be imported elsewhere (like becker.robots.*)
–Each file must contain the package definition in the first
line: package newPackageName;
–The files must reside in a directory tree that matches the
name: package BIT115; has files that live in the BIT115
folder.
–You must import the classes that are a part of a package to
use them.

	Variables and Classes
	Classes
	Variable Types
	Over-riding inherited methods
	Over-riding
	Overriding: Use Super
	Again: Classes are Building blocks!
	Multiple Files
	Using only one file
	Using Two Files!
	Debugging using println
	Packages

