1. Find the real solutions, if any, of

a.
$$x^2 + 3x + 9 = 0$$

Discriminant:
$$b^2 - 4ac = 3 * 3 - 4 * 1 * 9 = -27 < 0$$
, so NO real solutions

b.
$$x^2 - 4x - 2 = 0$$

Discriminant:
$$b^2 - 4ac = -4 * -4 - 4 * 1 * -2 = 24 > 0$$
, so 2 real solutions

Use the quadratic formula,

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 * 1 * -2}}{2 * 1}$$
$$= \frac{4 \pm \sqrt{24}}{2} = \frac{4 \pm 2\sqrt{6}}{2} = 2 \pm \sqrt{6}$$

$$x = 2 + \sqrt{6}, \qquad x = 2 - \sqrt{6}$$

or complete the square

$$x^2 - 4x + 4 - 4 - 2 = 0$$

$$(x-2)^2 - 6 = 0$$

$$(x-2)^2=6$$

$$x-2=\pm\sqrt{6}$$

$$x = 2 \pm \sqrt{6}$$

$$x = 2 \pm \sqrt{6}$$

$$x = 2 + \sqrt{6}, \qquad x = 2 - \sqrt{6}$$

2. Calculate:

a.
$$3i(-3+4i)$$

$$3i(-3+4i) = -9i + 12i^2$$

$$= -12 - 9i$$

b.
$$\frac{2+3i}{1-i}$$

$$\frac{2+3i}{1-i} = \frac{2+3i}{1-i} * \frac{1+i}{1+i} = \frac{2+3i+2i+3i^2}{1-i^2} = \frac{2-3+5i}{1-(-1)} = \boxed{-\frac{1}{2} + \frac{5}{2}i}$$

3. Solve 4 - 2x > 1 + x for x, express the result as an interval, and draw it on a number line.

$$4 - 1 > x + 2x$$

$$x < 1 \text{ or } (-\infty, 1)$$

- 4. Equations of circles:
 - a. What are the center and radius of a circle with equation $x^2 + (y + 2)^2 = 9$?

$$(x-h)^2 + (y-k)^2 = r^2$$

$$(x-0)^2 + (y-(-2))^2 = 3^2$$

Center is (0, -2) Radius is 3

b. Write an equation of the circle with center at (4,2) and radius 2.

$$(x-h)^2+(y-k)^2=r^2$$

$$\frac{(x-4)^2 + (y-2)^2 = 2^2}{(x-4)^2 + (y-2)^2 = 4}$$

$$(x-4)^2 + (y-2)^2 = 4$$

- 5. Put $f(x) = x^2 2x + 2$ into the standard form $a(x h)^2 + k$. Then sketch the graph of f(x) and label
 - a. The vertex
 - b. The axis of symmetry
 - c. The y-intercept
 - d. The x-intercepts, if any.

Standard form - complete the square:

$$f(x) = x^2 - 2x + 1 - 1 + 2$$

$$f(x) = (x - 1)^2 + 1$$

$$a = 1, h = 1, k = 1$$

Vertex: (1,1)

Axis of symmetry: x = 1

Y-intercept: $f(0) = 2 \rightarrow (0,2)$

X-intercepts: $0 = f(x) = (x - 1)^2 + 1$

 $(x-1)^2 = -1$

No solution so no x-intercepts

6. Which of the following define y as a function of x? (OK just to say "Yes" or "No")

a.
$$\{(-4,4), (-3,4), (-3,1), (-0,0)\}$$

b.
$$y = |x|$$

c.

X (state)	Y (Senator)
Arizona	McCain
NY	Clinton
Washington	Murray
Arizona	Kyl

- a. NO
- b. YES
- c. NO
- 7. Find the domain for each of these functions

a.
$$f(x) = \sqrt[2]{x+2}$$

$$x + 2 \ge 0$$

$$x \ge -2$$

$$x + 2 \ge 0$$

$$x \ge -2$$
b.
$$g(x) = \frac{x}{x^2 - x}$$

Avoid dividing by 0:
$$x^2 - x \neq 0$$

 $x(x-1) \neq 0$ All $x \neq 0$ or -1

c.
$$h(x) = \ln (x + 4)$$

Avoid ln(0 or negative)

$$x + 4 > 0$$

All
$$x > -4$$
, or $(-4, \infty)$

8. If
$$f(x) = x^2 + 1$$
 and $g(x) = \sqrt{x}$ then evaluate

a.
$$f(-1)$$

$$f(-1) = (-1)^2 + 1 = 1 + 1 = 2$$

b. g(f(x))

$$g(f(x)) = \sqrt{f(x)}$$

$$=\sqrt{x^2+1}$$

c. f(g(x))

$$f(g(x)) = (\sqrt{x})^2 + 1$$

$$= x + 1$$

9. The graph of y = f(x) is shown below:

- a. Is f(x) even, odd, or neither? EVEN
- b. Is $f\left(\frac{1}{2}\right)$ positive, negative, or zero? Positive
- c. List any intervals on which f(x) is increasing (-2,0) and (2,3)
- d. Identify any local minima of f(x) (-2, -1) and (2, -1)
- e. How often does the line y = 2 intersect the graph? 0 times

- 10. Transformations of graphs
 - a. What equation is obtained by shifting the graph of $f(x) = \ln(x)$ to the right by 2 units?

Change x by -2:
$$f(x) = \ln(x-2)$$

b. What function has the same graph as $f(x) = x^2$, shifted down by 1 unit? Change y (outside the function) by -1: $f(x) = x^2 - 1$

Change y (outside the function) by -1:
$$f(x) = x^2 - 1$$

11. For each of the following, say if it is a polynomial, and if it is, state the degree

a.
$$g(x) = \frac{x^4 - 1}{x^2}$$

 $g(x) = \frac{x^4 - 1}{x^2} = x^2 - \frac{1}{x^2}$

b.
$$f(x) = x^2 + e^x |_{No}$$

b.
$$f(x) = x^2 + e^x$$
 No
c. $h(x) = x(x^2 + 1)$ Yes, degree 3

- 12. Analyze $f(x) = \frac{x+1}{x-2}$ and provide the following information:
 - a. Domain
 - b. Vertical asymptotes if any
 - c. Horizontal asymptote if any
 - d. All intercepts
 - e. Sketch the graph

SOLUTION:

General form:
$$f(x) = \frac{x+1}{x-2}$$

Factored form:
$$f(x) = \frac{x+1}{x-2}$$

Domain:
$$x \neq 2$$

Lowest terms:
$$f(x) = \frac{x+1}{x-2}$$

Vertical asymptotes:
$$x = 2$$

End behavior: Ratio of leading terms $\frac{x}{y} = 1$

When
$$x \to \infty$$
, $f(x) \to 1$

When
$$x \to -\infty$$
, $f(x) \to 1$

$$\ \, \hbox{Horizontal asymptote:}\ y=1$$

y-intercept:
$$f(0) = \frac{1}{-2} = -\frac{1}{2} \left[(0, -\frac{1}{2}) \right]$$

x-intercepts: $f(x) = 0 \rightarrow x + 1 = 0 \rightarrow x = -1 \left[(-1,0) \right]$

x-intercepts:
$$f(x) = 0 \to x + 1 = 0 \to x = -1$$
 (-1,0)

Test points:
$$f(3) = \frac{4}{1} = x4 = (23,4)$$

13. Say whether each of the following is an exponential function of x

a.
$$f(x) = \ln(x^2)$$
NO

b.
$$f(x) = e^2$$
 No

c.
$$f(x) = x^5 |_{N_0}$$

d.
$$f(x) = 3^x$$
 Yes

14. Solve $3^{x-2} = 9^x$ for x

$$3^{x-2} = 9^x = 3^{2x}$$

$$x - 2 = 2x$$

$$x = -2$$

- 15. Logarithms
 - a. Write this equation as an equivalent equation involving an exponent: $log_{10}(y) = 3$

$$10^3 = y$$

b. Find
$$log_2(16)$$

Let
$$\log_2(16) = x$$

$$2^x = 16$$

$$2^4 = 16$$

$$x = 4$$

$$\log_2(16) = 4$$

- 16. Logarithms, continued
 - a. Write this a single logarithm and simplify if possible

$$3 \log_{2}(u) - \log_{2}(u^{2})$$

$$= \log_{2}(u^{3}) - \log_{2}(u^{2})$$

$$= \log_{2}(\frac{u^{3}}{u^{2}})$$

$$= \log_{2}(u)$$

b. Find $log_5(712)$ with a calculator by using the LN (natural logarithm) key.

$$\log_5(712) = \frac{\ln(712)}{\ln(5)} = 4.08$$

- 17. You have 100 yards of fencing and will use it to enclose 3 sides of a rectangular lot. The 4th side is the wall of a large building, so it doesn't need fencing.
 - a. Express the area A of the rectangle as a function of w, the dimension of the rectangle perpendicular to the existing wall.

$$A = lw$$

 $100 = 2w + l$
Solve for l in terms of w : $100 = 2w + l$
 $l = 100 - 2w$
 $A = (100 - 2w)w$
 $A(w) = -2w^2 + 100w$

Substitute
$$l=100-2w$$
. Then $100-2w\geq 0 \rightarrow 2w\leq 100 \rightarrow w\leq 50$

Putting the information together the domain is $0 \le w \le 50$

Both l and w must be non-negative: $w \ge 0$ and $l \ge 0$.

c. What is the area if the width is 20 feet?

$$A(20) = -2(20^2) + 100 * 20 = -800 + 2000 = 1600$$
 sq yds

- 18. A colony of bacteria grows exponentially. The population is measured to be 2000. Then 2 hours later it is 3,000.
 - a. Write an equation for the population as a function of time.
 - b. What will the population be at 4 hours?
 - c. When will the population be 10,000?

$$A(t) = A(0)e^{kt}$$

a. Second sentence means A(0) = 2000

Third sentence means
$$\frac{A(2)}{A(0)} = \frac{3}{2} = 1.5$$

$$1.5 = \frac{A(2)}{A(0)} = e^{k*2} \text{ since } A(2) = A(0)e^{k*2}$$

$$ln(1.5) = ln(e^{k*2}) = k*2$$

$$k = \frac{\ln(1.5)}{2} = 0.2027$$

$$A(t) = A(0)e^{kt} = 2000e^{0.2027t}$$

- b. At 4 hours, the population will be $A(4) = 2000e^{0.2027*4} = 4500$
- c. Solve $10000 = A(t) = 2000e^{0.2027t}$

$$5 = e^{0.2027t}$$

$$ln(5) = 0.2027t$$

$$t = \frac{\ln(5)}{0.2027} = 7.9387$$
 hours