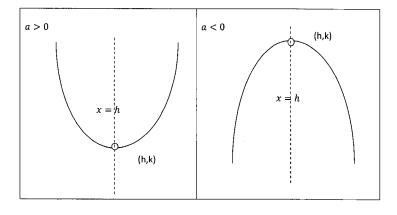
Forms of quadratic functions:

General form

General	Standard (completed square)	
$f(x) = ax^2 + bx + c$	$f(x) = a(x-h)^2 + k$ Vertex: (h, k) Axis of symmetry: $x = h$ $h = -\frac{b}{2a}$ or just complete the square $k = f(h)$	



Example: P. 312 #48

Sketch the graph of
$$f(x) = -3x^2 + 6x + 2$$
.

List and draw the vertex, axis of symmetry, and intercepts_

Put in the form $f(x) = a(x - h)^2 + k$

$$h = -\frac{b}{2a} = -\frac{6}{2.63} = 1$$

$$k = f(h) = f(1) = -3 \cdot 1^{2} + 6 \cdot 1 + 2 = -3 + 6 + 2 = 5$$

Standard form: $f(x) = -3(x-1)^2 + 5$ Vertex: (1,5) $\neq (h,k)$

Axis of symmetry: $\chi = 1$ $\chi = h$

$$x = h$$

Y-intercept:
$$X=0$$
 $f(s)=0$

X-intercepts: solve
$$\gamma = f(x) = 0$$

$$3 - 3(x-1)^{2} + 5 = 0$$

$$-3(x-1)^{2} = -5$$

$$3(x-1)^{2} = -5$$
 $(x-1)^{2} = +5$

Example: P. 312 #48

Sketch the graph of $f(x) = -3x^2 + 6x + 2$.

List and draw the vertex, axis of symmetry, and intercepts

Put in the form $f(x) = a(x - h)^2 + k$

$$h = -\frac{b}{2a} = -\frac{6}{2(-3)} = -\frac{6}{-6} = 1$$

$$k = f(h) = f(1) = -3(1)^{2} + 6(1) + 2 = -3 + 6 + 2 = 5$$

Standard form: $f(x) = -3(x-1)^2 + 5$

Vertex: (1,5)

Axis of symmetry: x = 1

Y-intercept: f(0) = 2

X-intercepts: solve f(x) = 0

$$f(x) = -3(x-1)^2 + 5 = 0$$

$$-3(x-1)^2 = -5$$

$$(x-1)^2 = \frac{5}{3}$$

$$x-1=\pm\sqrt{\frac{5}{3}}$$

$$x = 1 \pm \sqrt{\frac{5}{3}}$$

POLYNOMIALS

- Domain
- Factors, zeroes, multiplicity
- Power functions and end behavior
- · Graphing polynomials

Degree	Example	Form	Graph
0	f(x) = 3	$f(x) = a_0$	Horizontal line
1	f(x) = 2x - 1	$f(x) = a_1 x + a_0$	Line
2	$f(x) = -3x^2 + 6x + 2$	$f(x) = a_2 x^2 + a_1 x + a_0$	Parabola
		Or	
		$f(x) = ax^2 + bx + c$	
3	$f(x) = x^3 + 2x^2 - 1$	$f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$	
n	$f(x) = x^{35} - 2x^{34} \dots + 11$	$f(x) = a_n x^n + \dots + a_3 x^3 + a_2 x^2 + a_1 x$	
35		+ a ₀	

Only non-negative integer powers of x can appear

The degree n is the highest power that appears (with non-zero coefficient.) The coefficients are a_0,a_1,\ldots,a_n

P. 330 12, 14, 18, 20, 22

	Polynomial?	Degree?
12. $f(x) = 5x^2 + 4x^4$	YFS	4
14. $h(x) = 3 - \frac{1}{2}x^2$	YES	1
16. $f(x) = x(x-1)$	x2-X YES	2
18. $h(x) = \sqrt{x}(\sqrt{x} - 1)$	(x)2-1x	NO
$F(x) = \frac{x^2 - 5}{x^3}$	X - X 12 X - X 12 5 X - 3)	-> NO
22. $G(x) = -3x^2(x+2)^3$	YES	# 5

What is the domain of *any* polynomial function? All real numbers! $(-\infty, \infty)$.

POLYNOMIALS: Factors, zeros (roots) and MULTIPLICITY

Example: $g(x) = x^2 - x - 2$ is a polynomial of degree ___

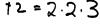
Factor: g(x) = (x - 2)(x + 1)

Factored form:

The factors of g(x) are (x-2) and (x+1)

The zeros or roots of g(x) are 2 and -1, because g(2) = 0 and g(-1) = 0.

If g(x) is a polynomial, then these are equivalent statements:





Example: $f(x) = x^3 + 2x^2 + x$

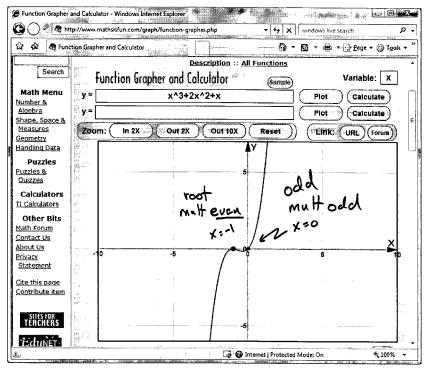
Factor: $f(x) = x(x^2 + 2x + 1) = x(x + 1)^2$ (x + 1)(x + 1) (x - 0)(x - (-1))(x - (-1))

Factors of f(x) are x and (x + 1)

The multiplicity of the zero -1 is 2.

The multiplicity of a root r is the exponent that appears with the factor (x-r).

Now graph f(x)



Multiplicity of r is EVEN	Multiplicity of r is ODD
Graph of $f(x)$ touches but does not cross the x-	Graph of $f(x)$ crosses the x-axis at r
axis at r	
f(x) does <i>not</i> change sign at r	f(x) changes sign at r

$$f(x) = x^3 + 2x^2 + x \text{ has degree}$$

Factored:
$$f(x) = x(x+1)^2 = (x)(x+1)(x+1)$$

This polynomial is completely factored: degree 3, and there are 3 factors, each of degree 1.

Not all polynomials can be completely factored – using real numbers.

Example: $f(x) = (x-2)(x^2+1)$ is of degree 3 but has only one real root: x=2.

Does it have any non-real roots?

Factor
$$x^2 + 1 = (x - i)(x + i)$$

 $x^2 + 1 = 0$
 $x^2 = -1$
 $x = \pm \sqrt{-1} = \pm i$

It turns out that all polynomials CAN be factored using complex numbers.

(but we're not going to go further on this topic).

P. 331 #40 Construct a polynomial of degree 3 with zeroes -4, 0, 2

ris azero
$$(x-r)$$
 factor

P. 331 #44 Construct a polynomial of degree 3 with zeroes -2 (multiplicity 2) and 4

Factor
$$f(x) = 3^2(x^2 - 4)(x - 5)$$
 as far as possible. What are the zeroes of $f(x)$?

degree 5

Factoring: $X^2 = X \cdot X$

$$= (\underline{X} - 0)(\underline{X} - 0)$$

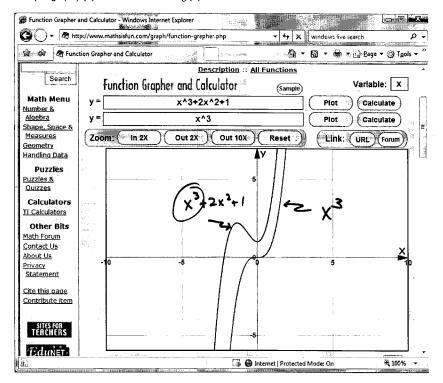
$$(\underline{X}^2 - 4) = (\underline{X} - 2)(\underline{X} + 2)$$

$$= (\underline{X} - 2)(\underline{X} - (-2))$$

$$f(x) = (x-0)(x-0)(x-2)(x-(-2))(x-5)$$
Zevoes: 0, +2, -2, +5

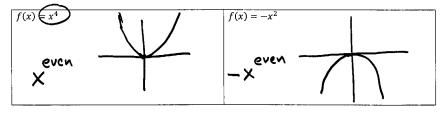
END-BEHAVIOR $\chi \rightarrow \infty$ $\chi \rightarrow -\infty$

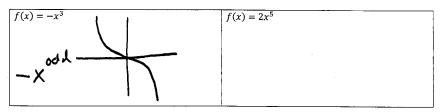
Example: graph $f(x) = x^3 + 2x^2 + 1$ and $g(x) = x^3$



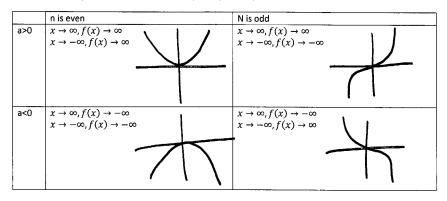
Behavior for large positive and large negative values of x ("end behavior") is determined by the behavior of the term with the largest exponent

What is the end behavior of



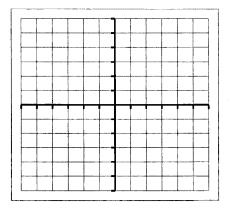


End behavior of $f(x) = ax^n$ (this is called a *power function*)



TRANSFORMATIONS OF POWER FUNCTIONS

P. 331 #32
$$f(x) = (x+2)^4 - 3$$



Graphing polynomials

- P. 331 #48 $f(x) = 2(x-3)(x+4)^3$
- a. Factor as far as possible and find x-intercepts (zeroes).
- b. Find how the graph behaves for each zero

Zero	Multiplicity	Behavior
3	1 ode	Crosses A-exi2
	3	Crosses x-axis

c. Find the degree and determine the end behavior

dearee : 4

Approach: we only care about the term of the highest power

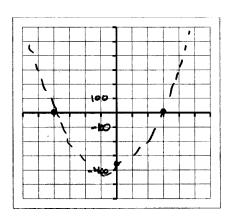
$$f(x) = 2(x-3)(x+4)^3 = 2(x-3)(x^3 + \cdots) = 2x^4 + \cdots$$

So $f(x)$ behaves like

1

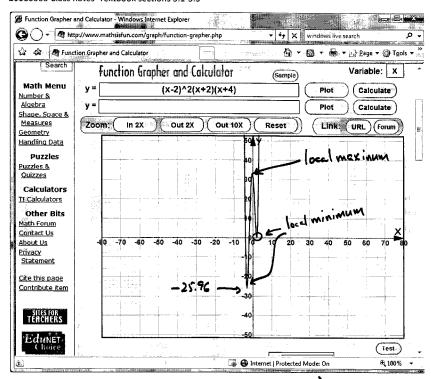
y intercept:
$$x=0$$

 $f(0)=2\cdot(-3)(4^3)=-6\cdot64$
= -384



P. 331 #76 $f(x) = (x-2)^2(x+2)(x+4)$ alway fectored?

Degree		
x-intercepts and	0 040308 (100,000 6 6	
behavior	T distant pances &	
penavior	-2 through	
	-4 through	
y-intercept	2 greens/bounces &2 through -4 through -(1) = (-2)^2(-2)(4) = 32	
Graph f with a utility	See next page	
Find local maxima	Minima: x=-3.19, f(x)=-25.96	End: dagree 4
and minima	Minima: x=-3.19, f(x)=-25.96 x=2, y=0	70.4
	3. /	\ \ \ \ \ + \ \
	Maxima: x=-0.31, y=33.27	17
Graph by hand		\
	 	
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	10	
Range		
Increasing		
_		
Decreasing		
_		



range (-25.96, +00)

RATIONAL FUNCTION

Is the ratio of 2 polynomials: $R(x) = \frac{p(x)}{q(x)}$

- Domain
- Revisiting $f(x) = \frac{1}{x}$
- End-behavior
- Asymptotes
- Graphing

DOMAIN

The domain of a polynomial function is $(-\infty, \infty)$.

What is the domain of a rational function $R(x) = \frac{p(x)}{q(x)}$?

What can "go wrong?"

The domain of $R(x) = \frac{p(x)}{q(x)}$ is $\{x: q(x) \neq 0\}$ - that is, denominator $\neq 0$

P. 344 #14: What is the domain of
$$G(x) = \frac{6}{(x+3)(4-x)}$$

Is this a redional funcy Yield

O= $Q(x) = (x+3)(x-4) \times (x-3) \times (x-4) \times (x-3) \times (x-4)$

Domain: $\{x: x \neq -3, x \neq 4\}$

What is the domain of $F(x) = \frac{x+1}{x^2-1}$? $\frac{x+1}{x^2-1} = \frac{x+1}{(x+1)(x-1)}$
 $Q(x) = (x+1)(x-1)$

Domain: $\{x: x \neq -1, x \neq 1\}$

In the domain: $F(x) = \frac{x+1}{x^2-1}$

Revisiting $f(x) = \frac{1}{x}$

Domain?			1			-		
Range?				_				
Intercepts?								
Even / odd?				-				
				-				

Graph $f(x) = \frac{1}{x^2}$

Domain?								 				T
	П				-		-	 		 	\dashv	
Range?												
	П											
						-		 		 		1
								 	ļ	 		- 1
Intercepts?	П				1					.		
	П										┪	
		-						 -		 -	-	
					<u> </u>		-	 				
Even / odd?		1	1									
	11						-					
		-	-					 		 		-
	H	L										
	П		1									1
	П			L		L		 L	L	 		
	_							 				_

Graph $f(x) = \frac{1}{x^3}$

Domain?		ΙГ											
		П											
		Ш	-	-			-+		 _	-	 	-	
	·	Ш											
Range?		11											
		11					-+			 	-		
*****		41	-						 				
Intercepts?			L				.						ļ
										•			
		11					_		 				\neg
F / 112		41							 	├ —	ļ		
Even / odd?						j	1			1			
		H	İ										
		Ш						-	 		-		-
			-		ļ				 -	ļ	├		
		11				l	1						. 1
									 ************	-			

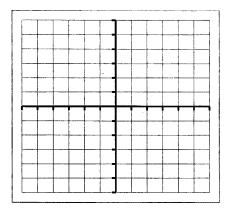
P. 345 #34

Graph
$$g(x) = \frac{2}{(x+2)^2}$$

Transformation

Starting function?

What transformations?



ASYMPTOTES

Vertical asymptotes

 $R(x) = \frac{p(x)}{q(x)}$ If q(c) = 0 and $p(c) \neq 0$ then the graph has a vertical asymptote x = c (see example above).

ALSO, if q(c)=0 and p(c)=0, the graph MAY have a vertical asymptote. Remove the common factor(s) from both numerator and denominator, and evaluate the result for x=c.

Examples

$$F(x) = \frac{x+1}{x^2-1}$$
. Then $p(-1) = q(-1) = 0$

Find common factors:

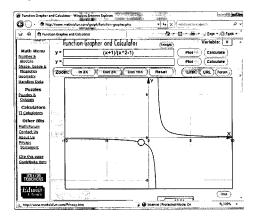
$$\frac{x+1}{x^2-1} = \frac{x+1}{(x+1)(x-1)} = \frac{1}{x-1} \text{ for } x \neq -1$$

Evaluate this at
$$x = -1$$
: $\frac{1}{-1-1} = -\frac{1}{2}$

Outcome: F(x) behaves like $\frac{1}{x-1}$ except at x=-1, where it is not defined (has a "hole")

Domain of F(x)?

Range?



Example:
$$G(x) = \frac{(x+2)}{x^2+4x+2}$$

$$p(-2) = q(-2) = 0$$

$$\frac{(x+2)}{x^2+4x+2} = \frac{(x+2)}{(x+2)(x+2)} = \frac{1}{x+2}$$

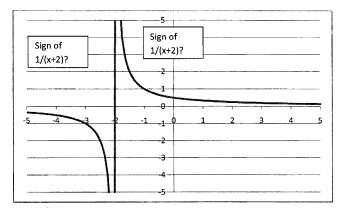
This is not defined for x=-2. But as $x\to -2$, the denominator approaches 0 while the numerator does NOT approach 0.

In this case, there is indeed an asymptote x = -2

Domain?

Range?

Which way does the graph "go" near an asymptote? Look at the sign!



Horizontal asymptotes

• If the numerator p(x) has lower degree than the denominator q(x), then the line y=0 (the x-axis) is a horizontal asymptote

Example: $G(x) = \frac{(x+2)}{x^2+4x+2}$ (previous example) – numerator degree is _____ denominator degree is

ullet If the numerator and denominator have equal degree, say n, then there is a horizontal asymptote

$$y = c$$
 where $c = \frac{coefficient\ of\ x^n\ in\ p(x)}{coefficient\ of\ x^n\ in\ q(x)}$

Example: $G(x) = \frac{2x^2}{x^2 + 4x + 2}$ then both p and q have degree 2. $c = \frac{2}{3} = 2$ so y = 2 is a horizontal asymptote

No horizontal asymptotes

If the numerator has degree greater than the numerator, then the graph has no horizontal
asymptote. To determine the "end-behavior" for large positive and negative x, find the ratio of the
highest-degree terms in numerator and denominator

Example:
$$R(x) = \frac{-x^3+3x+5}{x+1}$$

Ratio of highest-degree terms: $\frac{-x^3}{x} = -x^2$

The "end behavior" will be similar to $f(x) = -x^2$, a parabola opening down.

