| Transformation | Effect on the graph                            |
|----------------|------------------------------------------------|
| of f(x)        |                                                |
| y = f(x - h)   | Shift graph to the right by $\it h$            |
| y = f(x+h)     | Shift graph to the left by $h$                 |
| y = f(ax)      | Shrink the graph horizontally by factor of $a$ |
| y = f(-x)      | Reflect the graph about the $y$ axis           |
| y = bf(x)      | Expand the graph vertically by factor of b     |
| y = -f(x)      | Reflect the graph about the x axis             |
| y = f(x) + k   | Raise graph by $k$                             |
| y = f(x) - k   | Lower the graph by $k$                         |

Example: sketch the graph of  $f(x) = (x - 1)^2 + 3$ 

Starting point:

Transformations:



Functions of the form  $f(x) = ax^2 + bx + c$  are *quadratic functions*. Their graphs are related to the graph of  $f(x) = x^2$ . They share the same shape: *parabola*.

The **vertex** of a parabola is the point at its "tip". The **axis of symmetry** is the vertical line at the middle.

What are the vertex and axis of symmetry of  $f(x) = x^2$ ?



Sketch the graph of  $f(x) = x^2 - 6x - 1$ .

List and draw the vertex, axis of symmetry, and intercepts

Approach: put this in the form  $f(x) = a(x - h)^2 + k$ 

Complete the square:  $f(x) = x^2 - 6x - 1$ 

Transformations:

Vertex:

Axis of symmetry:



Sketch the graph of  $f(x) = -3x^2 + 6x + 2$ .

List and draw the vertex, axis of symmetry, and intercepts

Approach: put this in the form  $f(x) = a(x - h)^2 + k$ 

Complete the square:  $f(x) = -3x^2 + 6x + 2$ 

First step: factor out -3 from the x and  $x^2$  terms

## Transformation



Sketch the graph of  $f(x) = -3x^2 + 6x + 2$ .

List and draw the vertex, axis of symmetry, and intercepts

Approach: put this in the form  $f(x) = a(x - h)^2 + k$ 

Complete the square:  $f(x) = -3x^2 + 6x + 2$ 

First step: factor out -3 from the x and  $x^2$  terms

$$f(x) = -3(x^2 - 2x) + 2$$

$$=-3(x^2-2x+1-1)+2$$

$$=-3((x-1)^2-1)+2$$

$$= -3(x-1)^2 + 3 + 2$$

$$=-3(x-1)^2+5$$

## **Transformation**



Formulas: if  $f(x) = ax^2 + bx + c$ 

Then 
$$f(x) = a(x - h)^2 + k$$

$$h = -\frac{b}{2a}$$

$$k = f(h) = f\left(-\frac{b}{2a}\right)$$

The vertex is 
$$(h, k) = \left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$

And the axis of symmetry is the vertical line with equation x=h or  $x=-rac{b}{2a}$ 

Application: P. 314 #82